DM545 Linear and Integer Programming

> Lecture 4 Duality Theory

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Derivation and Motivation Theory

1. Derivation and Motivation

2. Theory

Outline

Derivation and Motivation Theory

1. Derivation and Motivation

2. Theory

A dual variable y_i associated to each constraint:

Primal problem:

Dual Problem:

$$\begin{array}{rcl} \max & z & = & c^T x \\ Ax & \leq & b \\ x & \geq & 0 \end{array}$$

$$\begin{array}{rcl} \min & w & = & b^T y \\ Ay & \geq & c \\ y & \geq & 0 \end{array}$$

Bounding approach

a feasible solution is a lower bound but how good? By tentatives:

$$(x_1, x_2, x_3) = (1, 0, 0) \rightsquigarrow z^* \ge 4$$

 $(x_1, x_2, x_3) = (0, 0, 3) \rightsquigarrow z^* \ge 9$

What about upper bounds?

multipliers $y_1, y_2 \ge 0$ that preserve sign of inequality

Coefficients

 $z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 + y_2)x_2 + y_2x_3 \le y_1 + 3y_2$ then to attain the best upper bound:

Multipliers Approach

Working columnwise, since at optimum $\bar{c}_k \leq 0$ for all k = 1, ..., n + m:

$$\begin{cases} \pi_{1}a_{11} + \pi_{2}a_{21} \dots + \pi_{m}a_{m1} + \pi_{m+1}c_{1} \leq 0\\ \vdots & \ddots \\ \pi_{1}a_{1n} + \pi_{2}a_{2n} \dots + \pi_{m}a_{mn} + \pi_{m+1}c_{n} \leq 0\\ \frac{\pi_{1}a_{1,n+1}}{\pi_{1}a_{1,n+1}} & \frac{\pi_{2}a_{2,n+2}}{\pi_{2}a_{2,n+2}} \dots & \frac{\pi_{m}a_{m,n+1}}{\pi_{m}a_{m,n+1}} & \frac{\pi_{m+1}}{\pi_{m+1}} = 1\\ \frac{\pi_{1}b_{1}}{\pi_{1}b_{1}} + \pi_{2}b_{2} \dots + \pi_{m}b_{m} & (\leq 0) \end{cases}$$

(since from the last row $z = -\pi b$ and we want to maximize z then we would $\min(-\pi b)$ or equivalently $\max \pi b$)

 $y = -\pi$

$$\begin{array}{rcl} \min & w & = & b^T y \\ A^T y & \geq & c \\ y & \geq & 0 \end{array}$$

Derivation and Motivation Theory

Example

$$\begin{cases} 5\pi_1 &+ 4\pi_2 &+ 6\pi_3 \leq 0\\ 10\pi_1 &+ 4\pi_2 &+ 8\pi_3 \leq 0\\ 1\pi_1 &+ 0\pi_2 &+ 0\pi_3 \leq 0\\ 0\pi_1 &+ 1\pi_2 &+ 0\pi_3 \leq 0\\ 0\pi_1 &+ 0\pi_2 &+ 1\pi_3 = 1\\ 60\pi_1 &+ 40\pi_2 \end{cases}$$

$$y_1 = -\pi_1 \ge 0$$

 $y_2 = -\pi_2 \ge 0$

...

Duality Recipe

	Primal linear program	Dual linear program
Variables	x_1, x_2, \ldots, x_n	y_1, y_2, \dots, y_m
Matrix	A	A^T
Right-hand side	b	с
Objective function	$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$
Constraints	i th constraint has $\leq \geq =$	$egin{array}{l} y_i \geq 0 \ y_i \leq 0 \ y_i \in \mathbb{R} \end{array}$
	$egin{array}{l} x_j \geq 0 \ x_j \leq 0 \ x_j \in \mathbb{R} \end{array}$	j th constraint has \geq \leq =

Outline

Derivation and Motivation Theory

1. Derivation and Motivation

2. Theory

Symmetry

Derivation and Motivation Theory

The dual of the dual is the primal: Primal problem:

$$\begin{array}{rcl} \max & z & = & c^T x \\ Ax & \leq & b \\ x & \geq & 0 \end{array}$$

$$\begin{array}{rcl} \min & w & = & b^T y \\ Ay & \geq & c \\ y & \geq & 0 \end{array}$$

Let's put the dual in the usual form Dual problem:

Dual of Dual:

$$\begin{array}{rcl} \min & b^{\mathsf{T}}y &\equiv & -\max - b^{\mathsf{T}}y & & -\min & c^{\mathsf{T}}x \\ & -Ay &\leq & -c & & -Ax &\geq & -b \\ & y &\geq & 0 & & x &\geq & 0 \end{array}$$

Weak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

$$\begin{array}{ll} (P) & \max\{c^T x \mid Ax \leq b, x \geq 0\} \\ (D) & \min\{b^T y \mid A^T y \geq c, y \geq 0\} \end{array}$$

for any feasible solution x of (P) and any feasible solution y of (D):

 $c^T x \leq b^T y$

Proof:

$$\sum_{j=1}^{n} c_j x_j \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_i a_{ij} \right) x_j \qquad \text{since } c_j \le \sum_{i=1}^{m} y_i a_{ij} \forall j \text{ and } x_j \ge 0$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_i \right) y_i \le \sum_{i=1}^{m} b_i y_i$$

Derivation and Motivation Theory

Strong Duality Theorem

Theorem (Strong Duality Theorem) *Given:*

(P)
$$\max\{c^T x \mid Ax \le b, x \ge 0\}$$

(D) $\min\{b^T y \mid A^T y \ge c, y \ge 0\}$

exactly one of the following occurs:

- 1. (P) and (D) are both infeasible
- 2. (P) is unbounded and (D) is infeasible
- 3. (P) is infeasible and (D) is unbounded
- 4. (P) has feasible solution x* = [x₁*,...,x_n*]
 (D) has feasible solution y* = [y₁*,...,y_m*]

$$c^{\mathsf{T}}x^* = b^{\mathsf{T}}y^*$$

Proof:

- all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D) are ruled out by weak duality theorem.
- ▶ we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas Lemma and convex polyhedral analysis)
- The last row of the final tableau will give us

$$z = z^* + \sum_{k=1}^{n+m} \bar{c}_k x_k = z^* + \sum_{j=1}^n \bar{c}_j x_j + \sum_{i=1}^m \bar{c}_{n+i} x_{n+i}$$
(*)
= $z^* + \bar{c}_B x_B + \bar{c}_N x_N$

In addition, $z^* = \sum_{j=1}^{n} c_j x_j^*$ because optimal value

• We define $y_i^* = -\overline{c}_{n+i}$, i = 1, 2, ..., m

▶ We claim that $(y_1^*, y_2^*, \dots, y_m^*)$ is a dual feasible solution satisfying $c^T x^* = b^T y^*$.

Let's verify the claim: We substitute in (*) $\sum c_j x_j$ for z and $x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j$ for $i = 1, 2, \ldots, m$ for slack variables

$$\sum c_j x_j = z^* + \sum_{j=1}^n \bar{c}_j x_j - \sum_{i=1}^m y_i^* \left(b_i - \sum_{j=1}^n a_{ij} x_j \right)$$
$$= \left(z^* - \sum_{i=1}^m y_i^* b_i \right) + \sum_{j=1}^n \left(\bar{c}_j + \sum_{i=1}^m a_{ij} y_i^* \right) x_j$$

This must hold for every (x_1, x_2, \ldots, x_n) hence:

$$z^* = \sum_{i=1}^m b_i y_i^* \implies y^* \text{ satisfies } c^T x^* = b^T y^*$$
$$c_j = \bar{c}_j + \sum_{i=1}^m a_{ij} y_i^*, j = 1, 2, \dots, n$$

/

Derivation and Motivation Theory

Since $\bar{c}_k \leq 0$ for every $k = 1, 2, \ldots, n + m$:

$$\bar{c}_j \leq 0 \rightsquigarrow \quad c_j - \sum_{i=1}^m y_i^* a_{ij} \leq 0 \rightsquigarrow \quad \sum_{i=1}^m y_i^* a_{ij} \geq c_j \quad j = 1, 2, \dots, n$$
$$\bar{c}_{n+i} \leq 0 \rightsquigarrow \quad y_i^* = -\hat{c}_{n+i} \geq 0, \qquad \qquad i = 1, 2, \dots, m$$

 $\implies y^*$ is also dual feasible solution

Complementary Slackness Theorem

Theorem (Complementary Slackness)

A feasible solution x^* for (P) A feasible solution y^* for (D) Necessary and sufficient conditions for optimality of both:

$$\left(c_{j}-\sum_{i=1}^{m}y_{i}^{*}a_{ij}\right)x_{j}^{*}=0, \quad j=1,\ldots,n$$

If
$$x_j^* \neq 0$$
 then $\sum y_i^* a_{ij} = c_j$ (no surplus)
If $\sum y_i^* a_{ij} > c_j$ then $x_j^* = 0$

Proof:

In scalars

 $z^* = cx^* \le y^*Ax^* \le by^* = w^*$

Hence from strong duality theorem:

 $cx^* - yAx^* = 0$

Derivation and Motivation Theory

 $\sum_{j=1}^{n} (c_{j} - \sum_{i=1}^{m} y_{i}^{*} a_{ij}) \underbrace{x_{j}^{*}}_{\geq 0} = 0$

Hence each term must be = 0

Dual Simplex

Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableaux:

- Primal works with feasible solutions towards optimality
- Dual works with optimal solutions towards feasibility

Primal simplex on primal problem:

- 1. pivot > 0
- 2. col c_j with wrong sign

3. row:

$$\min \left\{ \frac{b_i}{a_{ij}} : a_{ij} > 0, i = 1, ..., m \right\}$$

Dual simplex on primal problem:

2. row $b_i < 0$ (condition of feasibility)

3. col:

$$\min \left\{ \left| \frac{c_j}{a_{ij}} \right| : a_{ij} > 0, j = 1, 2, .., n + m \right\}$$
(least worsening solution)

It can work better in some cases than the primal.

Eg. since running time in practice between 2m and 3m, then if m = 99 and n = 9 then better the dual Dual based Phase I algorithm (Dual-primal algorithm) (see Sheet 3)

Dual Simplex

Derivation and Motivation Theory

Dual:

min	4 <i>y</i> 1	—	8 <i>y</i> 2	—	7 <i>y</i> 3		
	$-2y_{1}$	_	$2y_{2}$	_	<i>y</i> 3	\geq	-1
	$-y_1$	+	$4y_{2}$	+	3 <i>y</i> 3	\geq	-1
				y_{1}, y_{1}	V2, Y 3	\geq	0

Initial tableau

infeasible start

 \blacktriangleright x₁ enters, w₂ leaves

• Initial tableau (min $by \equiv -max - by$)

1	Ι	y1	Т	y2	T	yЗ	Ι	z1	Т	z2	L	-p	Т	b	Т
	-+-		.+.		+		.+.		+-		+.		+.		-1
1		2	T	2	T	1	Ι	1	T	0	T	0	Т	1	Т
1		1	T	-4	T	-3	Ι	0	T	1	T	0	Т	1	Т
	-+-		.+.		+		+-		+-		+-		+-		-1
I.	Т	-4	I	8	I	7	I	0	I	0	I	1	I	0	I

feasible start (thanks to $-x_1 - x_2$)

y₂ enters, z₁ leaves

Derivation and Motivation Theory

\blacktriangleright x₁ enters, w₂ leaves

1		x1	Т	x2	L	w1	T	w2	Т	wЗ	L	-z	L	b	L
	-+-		-+-		+-		+-		+		+-		+		٠L
1	T	0	1	-5	I.	1	Т	-1	I.	0	I.	0	I	12	I.
1	T	1	1	-2	I.	0	Т	-0.5	I.	0	I.	0	I	4	I.
1	T	0	Т	1	T	0	T	-0.5	I.	1	T	0	L	-3	L
	-+-		+-		+-		+-		+		+-		+		٠L
1	Τ	0	Т	-3	T	0	Т	-0.5	Т	0	T	1	Т	4	I.

▶ w_2 enters, w_3 leaves (note that we ▶ y_3 enters, y_2 leaves kept $c_i > 0$, ie, optimality)

L	1	x1	Т	x2	L	w1	T	w2	Т	wЗ	T	-z	T	ъ	L
-	+		+-		+		+		+		+-		+-		٠L
L	1	0	Т	-7	I.	1	T	0	Т	-2	I.	0	Т	18	I.
L	1	1	Т	-3	I	0	I	0	I.	-1	I.	0	Т	7	I.
L	1	0	T	-2	I	0	I	1	I.	-2	T	0	T	6	L
-	++++++														
L	1	0	Т	-4	T	0	T	0	Т	-1	I.	1	T	7	L

 \blacktriangleright y₂ enters, z₁ leaves

1	1	y1	I	y2	T	уЗ	T	z1	L	z2	T	-p	T	b	T
1-	+		-+		+-		+		+-		+-		+-		-1
1	1	1	T	1	T	0.5	T	0.5	L	0	T	0	T	0.5	T
1	1	5	T	0	T	-1	Т	2	I.	1	T	0	Т	3	Т
1-	++++++														
1	1	-4	T	0	I.	3	T	-12	L	0	I.	1	T	-4	Т

L	- I	y1	I	y2	I	yЗ	T	z1	L	z2	L	-p	T	b	I
1-	+		-+		+		+		+		+-		+-		٠I
L	1	2	I	2	T	1	Т	1	Т	0	I.	0	Т	1	I
L	- I	7	I	2	T	0	T	3	Т	1	T	0	T	3	I
1-	+		-+		+		+		+		+-		+-		٠I
L	1	-18	T	-6	T	0	T	-7	Т	0	I.	1	T	-7	I

Economic Interpretation

final tableau:

- Which are the values of variables, the reduced costs, the shadow prices (or marginal price), the values of dual variables?
- ▶ If one slack variable > 0 then overcapacity
- ► How many products can be produced at most? at most *m*
- ► How much more expensive a product not selected should be? look at reduced costs: $c - \pi A > 0$
- ▶ What is the value of extra capacity of manpower? In 1+1 out 1/5+1

Game: Suppose two economic operators:

- P owns the factory and produces goods
- ▶ D is the market buying and selling raw material and resources
- D asks P to close and sell him all resources
- P considers if the offer is convenient
- D wants to spend less possible
- y are prices that D offers for the resources
- $\sum y_i b_i$ is the amount D has to pay to have all resources of P
- $\sum y_i a_{ij} \ge c_j$ total value to make j > price per unit of product
- ▶ P either sells all resources $\sum y_i a_{ij}$ or produces product $j(c_j)$
- ▶ without ≥ there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- ▶ for product 0 ∑ y_ia_{ij} > c_j hence not profitable producing it. (complementary slackness th.)

Summary

Derivation and Motivation Theory

► Derivation:

- 1. bounding
- 2. multipliers
- 3. recipe
- 4. Lagrangian (to do)
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Economic interpretation