DM545
 Linear and Integer Programming

Lecture 4
 Duality Theory

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Derivation and Motivation
2. Theory

Outline

1. Derivation and Motivation

Dual Problem

A dual variable y_{i} associated to each constraint:

Primal problem:
$\begin{aligned} \max z & =c^{T} x \\ A x & \leq b \\ x & \geq 0\end{aligned}$

Dual Problem:
$\begin{aligned} \min & =b^{T} y \\ A y & \geq c \\ y & \geq 0\end{aligned}$

Bounding approach

$$
\begin{aligned}
\max 4 x_{1} & +x_{2}+3 x_{3} \\
x_{1} & +4 x_{2} \\
3 x_{1} & +x_{2}+x_{3}
\end{aligned}
$$

a feasible solution is a lower bound but how good?
By tentatives:

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right)=(1,0,0) \rightsquigarrow z^{*} \geq 4 \\
& \left(x_{1}, x_{2}, x_{3}\right)=(0,0,3) \rightsquigarrow z^{*} \geq 9
\end{aligned}
$$

What about upper bounds?

$$
\begin{gathered}
2 \cdot\left(\begin{array}{cc}
\left.x_{1}+4 x_{2}\right) & \leq 2(1) \\
+3 \cdot\left(\begin{array}{c}
2
\end{array}\right) \\
\left.3 x_{1}+x_{2}+x_{3}\right) & \leq 3(3) \\
11 x_{1}+5 x_{2}+3 x_{3} & \leq 11 \\
4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11 \\
c^{T} x & \leq
\end{array} y^{T} A x\right.
\end{gathered} \leq y^{T} b .
$$

Hence $z^{*} \leq 11$. Is this the best upper bound we can find?
multipliers $y_{1}, y_{2} \geq 0$ that preserve sign of inequality

$$
\begin{array}{cl}
y_{1} \cdot\left(\begin{array}{c}
x_{1}+4 x_{2} \\
+y_{2} \cdot\left(3 x_{1}+x_{2}+\right. \\
3
\end{array}\right) & \leq y_{1}(1) \\
\hline\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}+y_{2}\right) x_{2}+y_{2} x_{3} & \leq y_{1}+3 y_{2}
\end{array}
$$

Coefficients

$$
\begin{aligned}
y_{1}+3 y_{2} & \geq 4 \\
4 y_{1}+y_{2} & \geq 1 \\
y_{2} & \geq 3
\end{aligned}
$$

$z=4 x_{1}+x_{2}+3 x_{3} \leq\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}+y_{2}\right) x_{2}+y_{2} x_{3} \leq y_{1}+3 y_{2}$ then to attain the best upper bound:

$$
\begin{aligned}
& \min y_{1}+3 y_{2} \\
& y_{1}+3 y_{2} \geq 4 \\
& 4 y_{1}+y_{2} \geq 1 \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

Multipliers Approach

Working columnwise, since at optimum $\bar{c}_{k} \leq 0$ for all $k=1, \ldots, n+m$:

$$
\left\{\begin{array}{ccccccc}
\pi_{1} a_{11} & + & \pi_{2} a_{21} & \cdots & +\quad \pi_{m} a_{m 1} & +\pi_{m+1} c_{1} & \leq
\end{array}\right]
$$

(since from the last row $z=-\pi b$ and we want to maximize z then we would $\min (-\pi b)$ or equivalently $\max \pi b$)

$$
\begin{array}{cccccccc}
\max & \pi_{1} b_{1} & + & \pi_{2} b_{2} & \ldots & +\pi_{m} b_{m} \\
\pi_{1} a_{11} & + & \pi_{2} a_{21} & \ldots & +\pi_{m} a_{m 1} & \leq & -c_{1} \\
\vdots & \ddots & & & & & \\
& & & & & \\
\pi_{1} a_{1 n} & + & \pi_{2} a_{2 n} & \ldots & +\pi_{m} a_{m n} & \leq & -c_{n} \\
& & & & \pi_{1}, \pi_{2}, \ldots \pi_{m} & \leq & 0
\end{array}
$$

$$
y=-\pi
$$

$$
\begin{array}{cccccccc}
\max & -y_{1} b_{1} & + & -y_{2} b_{2} & \ldots & + & -y_{m} b_{m} & \\
-y_{1} a_{11} & + & -y_{2} a_{21} & \ldots & + & -y_{m} a_{m 1} & \leq & -c_{1} \\
\vdots & \ddots & & & & & \\
& -y_{1} a_{1 n} & + & -y_{2} a_{2 n} & \ldots & + & -y_{m} a_{m n} & \leq \\
& & & -y_{1},-y_{2}, \ldots-y_{m} & \leq & 0
\end{array}
$$

$$
\min w=b^{T} y
$$

$$
A^{T} y \geq c
$$

$$
y \geq 0
$$

Example

$$
\begin{aligned}
& \max 6 x_{1}+8 x_{2} \\
& 5 x_{1}+10 x_{2} \leq 60 \\
& 4 x_{1}+4 x_{2} \leq 40 \\
& x_{1}, x_{2} \geq 0 \\
& \left\{\begin{array}{c}
5 \pi_{1}+4 \pi_{2}+6 \pi_{3} \leq 0 \\
10 \pi_{1}+4 \pi_{2}+8 \pi_{3} \leq 0 \\
1 \pi_{1}+0 \pi_{2}+0 \pi_{3} \leq 0 \\
0 \pi_{1}+1 \pi_{2}+0 \pi_{3} \leq 0 \\
0 \pi_{1}+0 \pi_{2}+1 \pi_{3}=1 \\
60 \pi_{1}+40 \pi_{2}
\end{array}\right. \\
& \begin{array}{l}
y_{1}=-\pi_{1} \geq 0 \\
y_{2}=-\pi_{2} \geq 0
\end{array}
\end{aligned}
$$

Duality Recipe

	Primal linear program	Dual linear program
Variables	$x_{1}, x_{2}, \ldots, x_{n}$	$y_{1}, y_{2}, \ldots, y_{m}$
Matrix	A	A^{T}
Right-hand side	b	c
Objective function	$\max \mathbf{c}^{T} \mathbf{x}$	$\min \mathbf{b}^{T} \mathbf{y}$
Constraints	i th constraint has \leq \geq $=$	$\begin{aligned} & y_{i} \geq 0 \\ & y_{i} \leq 0 \\ & y_{i} \in \mathbb{R} \end{aligned}$
	$\begin{aligned} & x_{j} \geq 0 \\ & x_{j} \leq 0 \\ & x_{j} \in \mathbb{R} \end{aligned}$	$\begin{aligned} j \text { th constraint has } & \geq \\ & \leq \\ & = \end{aligned}$

Outline

1. Derivation and Motivation

2. Theory

Symmetry

The dual of the dual is the primal:

Primal problem:

$$
\begin{aligned}
\max z & =c^{T} x \\
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

Let's put the dual in the usual form
Dual problem:

$$
\begin{aligned}
\min \quad b^{T} y & \equiv-\max -b^{T} y \\
-A y & \leq-c \\
y & \geq 0
\end{aligned}
$$

Dual Problem:

$$
\begin{aligned}
\min & =b^{T} y \\
A y & \geq c \\
y & \geq 0
\end{aligned}
$$

Dual of Dual:

$$
\begin{aligned}
-\min & c^{T} x \\
-A x & \geq-b \\
x & \geq 0
\end{aligned}
$$

Weak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:
Theorem (Weak Duality Theorem)
Given:

$$
\begin{aligned}
& \text { (P) } \max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\} \\
& \text { (D) } \min \left\{b^{\top} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

for any feasible solution x of (P) and any feasible solution y of (D) :

$$
c^{\top} x \leq b^{T} y
$$

Proof:

$$
\begin{aligned}
\sum_{j=1}^{n} c_{j} x_{j} & \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j} \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{i}\right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}
\end{aligned}
$$

$$
\text { since } c_{j} \leq \sum_{i=1}^{m} y_{i} a_{i j} \forall j \text { and } x_{j} \geq 0
$$

Strong Duality Theorem

Theorem (Strong Duality Theorem)
Given:

$$
\begin{aligned}
& \text { (P) } \max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\} \\
& \text { (D) } \min \left\{b^{\top} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

exactly one of the following occurs:

1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution $x^{*}=\left[x_{1}^{*}, \ldots, x_{n}^{*}\right]$ (D) has feasible solution $y^{*}=\left[y_{1}^{*}, \ldots, y_{m}^{*}\right]$

$$
c^{T} x^{*}=b^{T} y^{*}
$$

Proof:

- all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D) are ruled out by weak duality theorem.
- we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas Lemma and convex polyhedral analysis)
- The last row of the final tableau will give us

$$
\begin{align*}
z & =z^{*}+\sum_{k=1}^{n+m} \bar{c}_{k} x_{k}=z^{*}+\sum_{j=1}^{n} \bar{c}_{j} x_{j}+\sum_{i=1}^{m} \bar{c}_{n+i} x_{n+i} \tag{*}\\
& =z^{*}+\bar{c}_{B} x_{B}+\bar{c}_{N} x_{N}
\end{align*}
$$

In addition, $z^{*}=\sum_{j=1}^{n} c_{j} x_{j}^{*}$ because optimal value

- We define $y_{i}^{*}=-\bar{c}_{n+i}, i=1,2, \ldots, m$
- We claim that $\left(y_{1}^{*}, y_{2}^{*}, \ldots, y_{m}^{*}\right)$ is a dual feasible solution satisfying $c^{T} x^{*}=b^{T} y^{*}$.
- Let's verify the claim:

We substitute in $\left(^{*}\right) \sum c_{j} x_{j}$ for z and $x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}$ for $i=1,2, \ldots, m$ for slack variables

$$
\begin{aligned}
\sum c_{j} x_{j} & =z^{*}+\sum_{j=1}^{n} \bar{c}_{j} x_{j}-\sum_{i=1}^{m} y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \\
& =\left(z^{*}-\sum_{i=1}^{m} y_{i}^{*} b_{i}\right)+\sum_{j=1}^{n}\left(\bar{c}_{j}+\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right) x_{j}
\end{aligned}
$$

This must hold for every $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ hence:

$$
\begin{aligned}
z^{*} & =\sum_{i=1}^{m} b_{i} y_{i}^{*} \\
c_{j} & =\bar{c}_{j}+\sum_{i=1}^{m} a_{i j} y_{i}^{*}, j=1,2, \ldots, n
\end{aligned}
$$

Since $\bar{c}_{k} \leq 0$ for every $k=1,2, \ldots, n+m$:

$$
\begin{array}{rlrl}
\bar{c}_{j} \leq 0 \rightsquigarrow & c_{j}-\sum_{i=1}^{m} y_{i}^{*} a_{i j} \leq 0 \rightsquigarrow & \sum_{i=1}^{m} y_{i}^{*} a_{i j} \geq c_{j} & j=1,2, \ldots, n \\
\bar{c}_{n+i} \leq 0 \rightsquigarrow & y_{i}^{*}=-\hat{c}_{n+i} \geq 0, & & i=1,2, \ldots, m
\end{array}
$$

$\Longrightarrow y^{*}$ is also dual feasible solution

Complementary Slackness Theorem

Theorem (Complementary Slackness)
A feasible solution x^{*} for (P)
A feasible solution y^{*} for (D)
Necessary and sufficient conditions for optimality of both:

$$
\left(c_{j}-\sum_{i=1}^{m} y_{i}^{*} a_{i j}\right) x_{j}^{*}=0, \quad j=1, \ldots, n
$$

If $x_{j}^{*} \neq 0$ then $\sum y_{i}^{*} a_{i j}=c_{j}$ (no surplus)
If $\sum y_{i}^{*} a_{i j}>c_{j}$ then $x_{j}^{*}=0$

Proof:

$$
z^{*}=c x^{*} \leq y^{*} A x^{*} \leq b y^{*}=w^{*}
$$

Hence from strong duality theorem:

$$
c x^{*}-y A x^{*}=0
$$

In scalars

Hence each term must be $=0$

Dual Simplex

Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableaux:

- Primal works with feasible solutions towards optimality
- Dual works with optimal solutions towards feasibility

Primal simplex on primal problem:

1. pivot >0
2. col c_{j} with wrong sign
3. row:

$$
\begin{aligned}
& \text { row: } \\
& \min \left\{\frac{b_{i}}{a_{i j}}: a_{i j}>0, i=1, . ., m\right\},
\end{aligned}
$$

Dual simplex on primal problem:

1. pivot <0
2. row $b_{i}<0$ (condition of feasibility)
3. col:
$\min \left\{\left|\frac{c_{j}}{a_{i j}}\right|: a_{i j}>0, j=1,2, . ., n+m\right\}$ (least worsening solution)

It can work better in some cases than the primal.
Eg. since running time in practice between $2 m$ and $3 m$, then if $m=99$ and
$n=9$ then better the dual
Dual based Phase I algorithm (Dual-primal algorithm) (see Sheet 3)

Dual Simplex

Example

Primal:

\max	$-x_{1}$	$-x_{2}$	
	$-2 x_{1}$	$-x_{2}$	\leq
$-2 x_{1}$	$+4 x_{2}$	\leq	-8
$-x_{1}$	$+3 x_{2}$	\leq	-7
		x_{1}, x_{2}	≥ 0

Dual:

$$
\begin{array}{rllll}
\min & 4 y_{1} & -8 y_{2} & -7 y_{3} & \\
& -2 y_{1} & -2 y_{2}-y_{3} & \geq & -1 \\
& -y_{1} & +4 y_{2}+3 y_{3} & \geq & -1 \\
& & y_{1}, y_{2}, y_{3} & \geq 0
\end{array}
$$

- Initial tableau (min by $\equiv-\max -$ by)

feasible start (thanks to $-x_{1}-x_{2}$)
- y_{2} enters, z_{1} leaves
- Initial tableau

infeasible start
- x_{1} enters, w_{2} leaves
- x_{1} enters, w_{2} leaves

- w_{2} enters, w_{3} leaves (note that we kept $c_{j}>0$, ie, optimality)

- y_{2} enters, z_{1} leaves

- y_{3} enters, y_{2} leaves

Economic Interpretation

$$
\begin{aligned}
& \max 5 x_{0}+6 x_{1}+8 x_{2} \\
& 6 x_{0}+5 x_{1}+10 x_{2} \leq 60 \\
& 8 x_{0}+4 x_{1}+4 x_{2} \geq 40 \\
& 4 x_{0}+5 x_{1}+6 x_{2} \geq 50 \\
& x_{0}, x_{1}, x_{2} \geq 0
\end{aligned}
$$

final tableau:

- Which are the values of variables, the reduced costs, the shadow prices (or marginal price), the values of dual variables?
- If one slack variable >0 then overcapacity
- How many products can be produced at most? at most m
- How much more expensive a product not selected should be? look at reduced costs: $c-\pi A>0$
- What is the value of extra capacity of manpower? In $1+1$ out $1 / 5+1$

Game: Suppose two economic operators:

- P owns the factory and produces goods
- D is the market buying and selling raw material and resources
- D asks P to close and sell him all resources
- P considers if the offer is convenient
- D wants to spend less possible
- y are prices that D offers for the resources
- $\sum y_{i} b_{i}$ is the amount D has to pay to have all resources of P
- $\sum y_{i} a_{i j} \geq c_{j}$ total value to make $j>$ price per unit of product
- P either sells all resources $\sum y_{i} a_{i j}$ or produces product $j\left(c_{j}\right)$
- without \geq there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- for product $0 \sum y_{i} a_{i j}>c_{j}$ hence not profitable producing it. (complementary slackness th.)

Summary

- Derivation:

1. bounding
2. multipliers
3. recipe
4. Lagrangian (to do)

- Theory:
- Symmetry
- Weak duality theorem
- Strong duality theorem
- Complementary slackness theorem
- Dual Simplex
- Economic interpretation

