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Derivation and Motivation
TheoryDual Problem

A dual variable yi associated to each constraint:

Primal problem:

max z = cT x
Ax ≤ b
x ≥ 0

Dual Problem:

min w = bT y
Ay ≥ c
y ≥ 0
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Derivation and Motivation
TheoryBounding approach

max 4x1 + x2 + 3x3
x1 + 4x2 ≤ 1
3x1 + x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

a feasible solution is a lower bound but how good?
By tentatives:

(x1, x2, x3) = (1, 0, 0) z∗ ≥ 4
(x1, x2, x3) = (0, 0, 3) z∗ ≥ 9

What about upper bounds?

2 · ( x1 + 4x2 ) ≤ 2(1)
+3 · ( 3x1 + x2 + x3) ≤ 3(3)

11x1 + 5x2 + 3x3 ≤ 11

4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11
cT x ≤ yTAx ≤ yTb

Hence z∗ ≤ 11. Is this the best upper bound we can find?
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multipliers y1, y2 ≥ 0 that preserve sign of inequality

y1 · ( x1 + 4x2 ) ≤ y1(1)
+y2 · ( 3x1 + x2 + x3) ≤ y2(3)
(y1 + 3y2)x1 + (4y1 + y2)x2 + y2x3 ≤ y1 + 3y2

Coefficients

y1 + 3y2 ≥ 4
4y1 + y2 ≥ 1

y2 ≥ 3

z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 + y2)x2 + y2x3 ≤ y1 + 3y2 then to
attain the best upper bound:

min y1 + 3y2
y1 + 3y2 ≥ 4
4y1 + y2 ≥ 1

y2 ≥ 3
y1, y2 ≥ 0
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TheoryMultipliers Approach

π1
...
πm
πm+1


a11 a12 . . . a1n a1,n+1 a1,n+2 . . . a1,m+n 0 b1
...

. . .
am1 am2 . . . amn am,n+1 am,n+2 . . . am,m+n 1 0
c1 c2 . . . cn 0 0 . . . 0 1 0


Working columnwise, since at optimum c̄k ≤ 0 for all k = 1, . . . , n + m:

π1a11 + π2a21 . . . + πmam1 + πm+1c1 ≤ 0
...

. . .
π1a1n + π2a2n . . . + πmamn + πm+1cn ≤ 0

π1a1,n+1, π2a2,n+2, . . . πmam,n+1 ≤ 0
πm+1 = 1

π1b1 + π2b2 . . . + πmbm (≤ 0)

(since from the last row z = −πb and we want to maximize z then we would
min(−πb) or equivalently maxπb)

7



Derivation and Motivation
Theory

max π1b1 + π2b2 . . . + πmbm

π1a11 + π2a21 . . . + πmam1 ≤ −c1
...

. . .
π1a1n + π2a2n . . . + πmamn ≤ −cn

π1, π2, . . . πm ≤ 0

y = −π

max −y1b1 + −y2b2 . . . + −ymbm

−y1a11 + −y2a21 . . . + −ymam1 ≤ −c1
...

. . .
−y1a1n + −y2a2n . . . + −ymamn ≤ −cn

−y1,−y2, . . .− ym ≤ 0

min w = bT y
AT y ≥ c

y ≥ 0
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TheoryExample

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0



5π1 + 4π2 + 6π3 ≤ 0
10π1 + 4π2 + 8π3 ≤ 0
1π1 + 0π2 + 0π3 ≤ 0
0π1 + 1π2 + 0π3 ≤ 0
0π1 + 0π2 + 1π3 = 1
60π1 + 40π2

y1 = −π1 ≥ 0
y2 = −π2 ≥ 0

...
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TheorySymmetry

The dual of the dual is the primal:
Primal problem:

max z = cT x
Ax ≤ b
x ≥ 0

Dual Problem:

min w = bT y
Ay ≥ c
y ≥ 0

Let’s put the dual in the usual form
Dual problem:

min bT y ≡ −max−bT y
−Ay ≤ −c
y ≥ 0

Dual of Dual:

−min cT x
−Ax ≥ −b

x ≥ 0
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TheoryWeak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P) max{cT x | Ax ≤ b, x ≥ 0}
(D) min{bT y | AT y ≥ c , y ≥ 0}

for any feasible solution x of (P) and any feasible solution y of (D):

cT x ≤ bT y

Proof:

n∑
j=1

cjxj ≤
n∑

j=1

(
m∑

i=1

yiaij

)
xj since cj ≤

m∑
i=1

yiaij∀j and xj ≥ 0

=
m∑

i=1

 n∑
j=1

aijxi

 yi ≤
m∑

i=1

biyi
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Theorem (Strong Duality Theorem)

Given:

(P) max{cT x | Ax ≤ b, x ≥ 0}
(D) min{bT y | AT y ≥ c , y ≥ 0}

exactly one of the following occurs:
1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution x∗ = [x∗1 , . . . , x

∗
n ]

(D) has feasible solution y∗ = [y∗
1 , . . . , y

∗
m]

cT x∗ = bT y∗
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Proof:

I all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded)
for (P) and 3 for (D) are ruled out by weak duality theorem.

I we use the simplex method. (Other proofs independent of the simplex
method exist, eg, Farkas Lemma and convex polyhedral analysis)

I The last row of the final tableau will give us

z = z∗ +
n+m∑
k=1

c̄kxk = z∗ +
n∑

j=1

c̄jxj +
m∑

i=1

c̄n+ixn+i (*)

= z∗ + c̄BxB + c̄NxN

In addition, z∗ =
∑n

j=1 cjx
∗
j because optimal value

I We define y∗
i = −c̄n+i , i = 1, 2, . . . ,m

I We claim that (y∗
1 , y

∗
2 , . . . , y

∗
m) is a dual feasible solution satisfying

cT x∗ = bT y∗.
15



Derivation and Motivation
Theory

I Let’s verify the claim:
We substitute in (*)

∑
cjxj for z and xn+i = bi −

∑n
j=1 aijxj for

i = 1, 2, . . . ,m for slack variables

∑
cjxj = z∗ +

n∑
j=1

c̄jxj −
m∑

i=1

y∗
i

bi −
n∑

j=1

aijxj


=

(
z∗ −

m∑
i=1

y∗
i bi

)
+

n∑
j=1

(
c̄j +

m∑
i=1

aijy∗
i

)
xj

This must hold for every (x1, x2, . . . , xn) hence:

z∗ =
m∑

i=1

biy∗
i =⇒ y∗ satisfies cT x∗ = bT y∗

cj = c̄j +
m∑

i=1

aijy∗
i , j = 1, 2, . . . , n
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Since c̄k ≤ 0 for every k = 1, 2, . . . , n + m:

c̄j ≤ 0 cj −
m∑

i=1

y∗
i aij ≤ 0 

m∑
i=1

y∗
i aij ≥ cj j = 1, 2, . . . , n

c̄n+i ≤ 0 y∗
i = −ĉn+i ≥ 0, i = 1, 2, . . . ,m

=⇒ y∗ is also dual feasible solution
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TheoryComplementary Slackness Theorem

Theorem (Complementary Slackness)

A feasible solution x∗ for (P)
A feasible solution y∗ for (D)
Necessary and sufficient conditions for optimality of both:(

cj −
m∑

i=1

y∗
i aij

)
x∗j = 0, j = 1, . . . , n

If x∗j 6= 0 then
∑

y∗
i aij = cj (no surplus)

If
∑

y∗
i aij > cj then x∗j = 0

Proof:

z∗ = cx∗ ≤ y∗Ax∗ ≤ by∗ = w∗

Hence from strong duality theorem:

cx∗ − yAx∗ = 0

In scalars
n∑

j=1

(cj −
m∑

i=1

y∗
i aij︸ ︷︷ ︸

≤0

) x∗j︸︷︷︸
≥0

= 0

Hence each term must be = 0
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Dual simplex (Lemke, 1954): apply the simplex method to the dual problem
and observe what happens in the primal tableaux:

I Primal works with feasible solutions towards optimality
I Dual works with optimal solutions towards feasibility

Primal simplex on primal problem:

1. pivot > 0

2. col cj with wrong sign

3. row:
min

{
bi
aij

: aij > 0, i = 1, ..,m
}

Dual simplex on primal problem:
1. pivot < 0

2. row bi < 0 (condition of
feasibility)

3. col:
min

{∣∣∣ cj
aij

∣∣∣ : aij > 0, j = 1, 2, .., n + m
}

(least worsening solution)

It can work better in some cases than the primal.
Eg. since running time in practice between 2m and 3m, then if m = 99 and
n = 9 then better the dual
Dual based Phase I algorithm (Dual-primal algorithm) (see Sheet 3)
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Example

Primal:

max −x1 − x2

−2x1 − x2 ≤ 4
−2x1 + 4x2 ≤ −8
−x1 + 3x2 ≤ −7

x1, x2 ≥ 0

Dual:

min 4y1 − 8y2 − 7y3

−2y1 − 2y2 − y3 ≥ −1
−y1 + 4y2 + 3y3 ≥ −1

y1, y2, y3 ≥ 0

I Initial tableau

| | x1 | x2 | w1 | w2 | w3 | -z | b |
|---+----+----+----+----+----+----+----|
| | -2 | -1 | 1 | 0 | 0 | 0 | 4 |
| | -2 | 4 | 0 | 1 | 0 | 0 | -8 |
| | -1 | 3 | 0 | 0 | 1 | 0 | -7 |
|---+----+----+----+----+----+----+----|
| | -1 | -1 | 0 | 0 | 0 | 1 | 0 |

infeasible start
I x1 enters, w2 leaves

I Initial tableau (min by ≡ −max−by)

| | y1 | y2 | y3 | z1 | z2 | -p | b |
|---+----+----+----+----+----+----+---|
| | 2 | 2 | 1 | 1 | 0 | 0 | 1 |
| | 1 | -4 | -3 | 0 | 1 | 0 | 1 |
|---+----+----+----+----+----+----+---|
| | -4 | 8 | 7 | 0 | 0 | 1 | 0 |

feasible start (thanks to −x1 − x2)
I y2 enters, z1 leaves
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I x1 enters, w2 leaves
| | x1 | x2 | w1 | w2 | w3 | -z | b |
|---+----+----+----+------+----+----+----|
| | 0 | -5 | 1 | -1 | 0 | 0 | 12 |
| | 1 | -2 | 0 | -0.5 | 0 | 0 | 4 |
| | 0 | 1 | 0 | -0.5 | 1 | 0 | -3 |
|---+----+----+----+------+----+----+----|
| | 0 | -3 | 0 | -0.5 | 0 | 1 | 4 |

I w2 enters, w3 leaves (note that we
kept cj > 0, ie, optimality)
| | x1 | x2 | w1 | w2 | w3 | -z | b |
|---+----+----+----+----+----+----+----|
| | 0 | -7 | 1 | 0 | -2 | 0 | 18 |
| | 1 | -3 | 0 | 0 | -1 | 0 | 7 |
| | 0 | -2 | 0 | 1 | -2 | 0 | 6 |
|---+----+----+----+----+----+----+----|
| | 0 | -4 | 0 | 0 | -1 | 1 | 7 |

I y2 enters, z1 leaves
| | y1 | y2 | y3 | z1 | z2 | -p | b |
|---+----+----+-----+-----+----+----+-----|
| | 1 | 1 | 0.5 | 0.5 | 0 | 0 | 0.5 |
| | 5 | 0 | -1 | 2 | 1 | 0 | 3 |
|---+----+----+-----+-----+----+----+-----|
| | -4 | 0 | 3 | -12 | 0 | 1 | -4 |

I y3 enters, y2 leaves
| | y1 | y2 | y3 | z1 | z2 | -p | b |
|---+-----+----+----+----+----+----+----|
| | 2 | 2 | 1 | 1 | 0 | 0 | 1 |
| | 7 | 2 | 0 | 3 | 1 | 0 | 3 |
|---+-----+----+----+----+----+----+----|
| | -18 | -6 | 0 | -7 | 0 | 1 | -7 |
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max 5x0 + 6x1 + 8x2

6x0 + 5x1 + 10x2 ≤ 60
8x0 + 4x1 + 4x2 ≥ 40
4x0 + 5x1 + 6x2 ≥ 50

x0, x1, x2 ≥ 0
final tableau:

x0 x1 x2 s1 s2 s3 −z b
0 1 0 5/2
1 0 0 7
0 0 1 2

−1/5 0 0 −1/5 0 −1 62

I Which are the values of variables, the reduced costs, the shadow prices
(or marginal price), the values of dual variables?

I If one slack variable > 0 then overcapacity
I How many products can be produced at most? at most m
I How much more expensive a product not selected should be?

look at reduced costs: c − πA > 0
I What is the value of extra capacity of manpower? In 1+1 out 1/5+1

22



Derivation and Motivation
Theory

Game: Suppose two economic operators:
I P owns the factory and produces goods
I D is the market buying and selling raw material and resources
I D asks P to close and sell him all resources
I P considers if the offer is convenient
I D wants to spend less possible
I y are prices that D offers for the resources
I
∑

yibi is the amount D has to pay to have all resources of P
I
∑

yiaij ≥ cj total value to make j > price per unit of product
I P either sells all resources

∑
yiaij or produces product j (cj)

I without ≥ there would not be negotiation because P would be better off
producing and selling

I at optimality the situation is indifferent (strong th.)
I resource 2 that was not totally utilized in the primal has been given

value 0 in the dual. (complementary slackness th.) Plausible, since we do
not use all the resource, likely to place not so much value on it.

I for product 0
∑

yiaij > cj hence not profitable producing it.
(complementary slackness th.)
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I Derivation:

1. bounding
2. multipliers
3. recipe
4. Lagrangian (to do)

I Theory:
I Symmetry
I Weak duality theorem
I Strong duality theorem
I Complementary slackness theorem

I Dual Simplex

I Economic interpretation
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