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Lagrangian Duality
Relaxation: if a problem is hard to solve then find an easier problem
resembling the original one that provides information in terms of bounds.
Then search strongest bounds.

min 13x; + 6x0 + 4x3 +12x4
2x1 +3x0 +4x3 4+ bxu =7
3x; + +2x3 4+ Adxg =2
X1, X2, X3, X4 Z 0

We wish to reduce to a problem easier to solve, ie:
min ¢1x1 + Gxo + ... +ChXp

solvable by inspection: if ¢ < 0 then x = +o0, if ¢ > 0 then x = 0.
measure of violation of the constraints:

7 — (2x1 + 3x2 + 4x3 + 5xq)
2 — (3X1 + + 2X3 + 4X4)
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We relax these measures in the obj. function with Lagrangian multipliers y1,

y2.
We obtain a family of problems:

13x7 4+ 6x0 + 4x3 + 12x4

PR(yl,yQ) = min +y1(7— 2X1 + 3X2 + 4-X3 + 5X4)
X1,X2,X3,X4>0

+y2(2— 3x1 +  +2x3 + 4x4)

L. forall y1,y2 € R : opt(PR(y1,y2)) < opt(P)
2. maxy, y,er{opt(PR(y1,y2))} < opt(P)

PR is easy to solve.
(It can be also seen as a proof of the weak duality theorem)
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(13 - 2y2 - 3y2) X1

+ (6 —3n ) X2

PR(y1,y2) = min . + (4 —2y5) x3
X1,X2,X3,X4 2 + (12 o 5y1 o 4y2) X4

+

Ty1 + 2y

if coeff. of x is < 0 then bound is —oco then LB is useless

(13 — 2y2 — 3y2) Z 0
(6 — 31 ) >0
(4 —2y2) >0

(12 —5y; —4y,) >0

If they all hold then we are left with 7y; + 2y» because all go to 0.

max 7y; + 2y»
2y> + 3y
3%
+ 2y»
Sy1 + 4y2
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Lagrangian Duality

General Formulation Sy Amalye

max z=c'xceR"
Ax=b AcR™Xn pecRm
x>0 xeR”

né?st-{ min {cx +y(b— Ax)}}

yﬂg%,xn{gﬁn {(c — yA)x + yb}}

max b7y
ATy <c
y e R”
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Sensitivity Analysis

aka Postoptimality Analysis

Sensitivity Analysis

Instead of solving each of the modified problems from scratch, exploit results
obtained from solving the original problem.

max{c'x | Ax = b,| < x < u} (*)

(1) changes to coefficients of objective function:
max{¢Tx | Ax = b,/ < x < u} (primal)
x* of (*) remains feasible hence we can restart the simplex from x*

(1) changes to RHS terms: max{c”x | Ax = b,/ < x < u} (dual)
x* optimal feasible solution of (*)
basic sol x of (ll): Xy = x*, Agxg = b— Anxn
% is dual feasible and we can start the dual simplex from there. If b
differs from b only slightly it may be we are already optimal.
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(M) introduce a new variable: (primal)

6 7
max E CiXj max E CiXj
j=1 j=1

6 7
Za,-jxj-:b,-, i=1,...,3 Zaijxj:bi’i:17"'73
=1 =
<x<u,j=1,...,6 [ <x<u,j=1,...,7
[x{,...,xg] feasible [x{,...,xs,0] feasible

(IV) introduce a new constraint: (dual)
i b [x{,-..,x5] optimal
=y [x1,...,x5,%7,xg] feasible
6
6 * b . *
Zaijj = bs X7 = ba — 234_/)9'
j=1 j=1

i <x <y j=18 . 26 .
’ Xg :b5— 25_,'Xj
j=1
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Examples

(1) Variation of reduced costs:

max 6x; + 8x»
5X1 + ].OX2 S 60
4X1 + 4X2 S 40
X1, X2 2 0

The last tableau gives the possibility

to estimate the effect of variations

For a variable in basis

max(6 + 0)x; + 8xz

Lagrangian Duality
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‘
IX1 Xo X3 X4 —z b

%5101 0 0 60
xs!4 4 01 040

% 0 1 1/5 —1/4 0 2
x!l0-1/51/2 0 8

the perturbation goes unchanged in the red. costs.:

2
~55-1-4+1(6+0)

For a variable not in basis it may change the sign of the reduced cost —
worth bringing in basis =the J term propagates to other columns
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(1) Changes in RHS terms

IX1 X2 X3 X4 —z b

68001 0

IX1 X2 X3 X4 —Z b

10°0-2/5 —1 1 —64—2/56—¢
It would be more convenient to augment the second.
If 60 + 0 =-all RHS terms change and we must check feasibility
Which are the multipliers for the first row?k; = %, ko = —%., ks =0
I:1/5(604+6)—1/4-404+0-0=12+6/5—-10=2+6/5
II: —1/5(6046)+1/2-404+0-0=—60/5+20—4§/5=8—1/5§
Risk that RHS becomes negative
Eg: if § = —20 —tableau stays optimal but not feasible =—-apply dual
simplex
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Graphical Representation

Lagrangian Duality
Sensitivity Analysis

13



Lagrangian Duality
Sensitivity Analysis

(1) Add a variable

max bxg + 6x1 + 8xo
6Xo + 5X1 + ].OX2 S 60
8X0 + 4X1 + 4X2 S 40
X0, X1,X2 > 0

Reduced cost of xo? ¢; — > ma; = —2 + (~1)8+1-5=—%

To make worth entering in basis:
> increase its cost

> decrease the amount in constraint Il: —2/5-6 — axo +5 > 0
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(IV) Add a constraint

max 6x; + 8x»
5x; + 10x < 60
4X1 + 4X2 S 40
5X1 + 6X2 S 50
X1, X2 Z 0

Final tableau not in canonical form, need to iterate

2‘0 171/5 =174 0 2
xi110-1/51/2 0 8
1005/5 6/4 10 -2

"T00-2/5 -1 0 1 —64
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(V) change in a technological coefficient:

X1 X2 x3xa—z b

X4L4 4 01 0 40

> first effect on its column
» then look at ¢

» finally look at b

%10 (10+6)1/5+4(—1/4) 1/5 —1/4 0 2
x!1 (10+06)(—~1/5)+4(1/2) -1/5 1/2 0 8



Res u m e Sensitivity Analysis

Advantages of considering the dual formulation:

|

proving optimality (although the simplex tableau can already do that)
gives a way to check the correctness of results easily

alternative solution method (ie, primal simplex on dual)

sensitivity analysis

solving P or D we solve the other for free

certificate of infeasibility
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