DM545
 Linear and Integer Programming

Lecture 5
 Sensitivity Analysis Revised Simplex Method

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Lagrangian Duality
2. Sensitivity Analysis

Outline

1. Lagrangian Duality

2. Sensitivity Analysis

Lagrangian Duality

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds.
Then search strongest bounds.

$$
\begin{array}{r}
\min 13 x_{1}+6 x_{2}+4 x_{3}+12 x_{4} \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=7 \\
3 x_{1}+\quad+2 x_{3}+4 x_{4}=2 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

We wish to reduce to a problem easier to solve, ie:

$$
\begin{array}{r}
\min c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{array}
$$

solvable by inspection: if $c<0$ then $x=+\infty$, if $c \geq 0$ then $x=0$. measure of violation of the constraints:

$$
\begin{aligned}
& 7-\left(2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}\right) \\
& 2-\left(3 x_{1}+\quad+2 x_{3}+4 x_{4}\right)
\end{aligned}
$$

We relax these measures in the obj. function with Lagrangian multipliers y_{1}, y_{2}.
We obtain a family of problems:

$$
P R\left(y_{1}, y_{2}\right)=\min _{x_{1}, x_{2}, x_{3}, x_{4} \geq 0}\left\{\begin{array}{r}
13 x_{1}+6 x_{2}+4 x_{3}+12 x_{4} \\
+y_{1}\left(7-2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}\right) \\
+y_{2}\left(2-3 x_{1}++2 x_{3}+4 x_{4}\right)
\end{array}\right\}
$$

1. for all $y_{1}, y_{2} \in \mathbb{R}: \operatorname{opt}\left(P R\left(y_{1}, y_{2}\right)\right) \leq \operatorname{opt}(P)$
2. $\max _{y_{1}, y_{2} \in \mathbb{R}}\left\{\operatorname{opt}\left(P R\left(y_{1}, y_{2}\right)\right)\right\} \leq \operatorname{opt}(P)$

PR is easy to solve.
(It can be also seen as a proof of the weak duality theorem)

$$
P R\left(y_{1}, y_{2}\right)=\min _{x_{1}, x_{2}, x_{3}, x_{4} \geq 0}\left\{\begin{array}{c}
\left(13-2 y_{2}-3 y_{2}\right) x_{1} \\
+\left(6-3 y_{1}\right) x_{2} \\
+\left(4 \quad-2 y_{2}\right) x_{3} \\
+\left(12-5 y_{1}-4 y_{2}\right) x_{4} \\
+ \\
7 y_{1}+2 y_{2}
\end{array}\right\}
$$

if coeff. of x is <0 then bound is $-\infty$ then LB is useless

$$
\begin{aligned}
\left(13-2 y_{2}-3 y_{2}\right) & \geq 0 \\
\left(6-3 y_{1}\right) & \geq 0 \\
\left(4-2 y_{2}\right) & \geq 0 \\
\left(12-5 y_{1}-4 y_{2}\right) & \geq 0
\end{aligned}
$$

If they all hold then we are left with $7 y_{1}+2 y_{2}$ because all go to 0 .

$$
\begin{aligned}
\max 7 y_{1}+2 y_{2} & \\
2 y_{2}+3 y_{2} & \leq 13 \\
3 y_{1} & \leq 6 \\
+2 y_{2} & \leq 4 \\
5 y_{1}+4 y_{2} & \leq 12
\end{aligned}
$$

General Formulation

$$
\begin{aligned}
\max \quad z & =c^{T} x c \in \mathbb{R}^{n} \\
A x & =b \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
x & \geq 0 \quad x \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{gathered}
\max _{y \in \mathbb{R}^{m}}\left\{\min _{x \in \mathbb{R}_{+}^{n}}\{c x+y(b-A x)\}\right\} \\
\max _{y \in \mathbb{R}^{m}}\left\{\min _{x \in \mathbb{R}_{+}^{n}}\{(c-y A) x+y b\}\right\} \\
\max \quad b^{T} y \\
A^{T} y \leq c \\
y \in \mathbb{R}^{m}
\end{gathered}
$$

Outline

1. Lagrangian Duality
2. Sensitivity Analysis

Instead of solving each of the modified problems from scratch, exploit results obtained from solving the original problem.

$$
\begin{equation*}
\max \left\{c^{\top} x \mid A x=b, l \leq x \leq u\right\} \tag{*}
\end{equation*}
$$

(I) changes to coefficients of objective function:
$\max \left\{\tilde{c}^{T} x \mid A x=b, I \leq x \leq u\right\}$
x^{*} of $\left(^{*}\right)$ remains feasible hence we can restart the simplex from x^{*}
(II) changes to RHS terms: $\max \left\{c^{\top} x \mid A x=\tilde{b}, I \leq x \leq u\right\}$
x^{*} optimal feasible solution of $\left({ }^{*}\right)$
basic sol \bar{x} of (II): $\bar{x}_{N}=x^{*}, A_{B} \bar{x}_{B}=\tilde{b}-A_{N} \bar{x}_{N}$
\bar{x} is dual feasible and we can start the dual simplex from there. If \tilde{b} differs from b only slightly it may be we are already optimal.
(III) introduce a new variable:

$$
\begin{aligned}
\max & \sum_{j=1}^{6} c_{j} x_{j} \\
& \sum_{j=1}^{6} a_{i j} x_{j}=b_{i}, i=1, \ldots, 3 \\
& l_{j} \leq x_{j} \leq u_{j}, j=1, \ldots, 6 \\
& {\left[x_{1}^{*}, \ldots, x_{6}^{*}\right] \text { feasible } }
\end{aligned}
$$

(IV) introduce a new constraint:

$$
\begin{aligned}
& \sum_{j=1}^{6} a_{4 j} x_{j}=b_{4} \\
& \sum_{j=1}^{6} a_{5 j} x_{j}=b_{5} \\
& l_{j} \leq x_{j} \leq u_{j} \quad j=7,8
\end{aligned}
$$

$$
\begin{aligned}
\max & \sum_{j=1}^{7} c_{j} x_{j} \\
& \sum_{j=1}^{7} a_{i j} x_{j}=b_{i}, i=1, \ldots, 3 \\
& l_{j} \leq x_{j} \leq u_{j}, j=1, \ldots, 7 \\
& {\left[x_{1}^{*}, \ldots, x_{6}^{*}, 0\right] \text { feasible } }
\end{aligned}
$$

$$
\begin{array}{r}
{\left[x_{1}^{*}, \ldots, x_{6}^{*}\right] \text { optimal }} \\
{\left[x_{1}^{*}, \ldots, x_{6}^{*}, x_{7}^{*}, x_{8}^{*}\right] \text { feasible }} \\
x_{7}^{*}=b_{4}-\sum_{j=1}^{6} a_{4 j} x_{j}^{*} \\
x_{8}^{*}=b_{5}-\sum_{j=1}^{6} a_{5 j} x_{j}^{*}
\end{array}
$$

Examples

(I) Variation of reduced costs:

$$
\begin{aligned}
\max 6 x_{1}+8 x_{2} & \\
5 x_{1}+10 x_{2} & \leq 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The last tableau gives the possibility to estimate the effect of variations

$$
\begin{array}{llllll}
& \begin{array}{llllll}
x_{1} & x_{2} & x_{3} & x_{4} & -z & b \\
\hdashline x_{2} & 0 & 1 & 1 / 5 & -1 / 4 & 0 \\
\hline & 2 \\
x_{1} & 1 & 0 & -1 / 5 & 1 / 2 & 0 \\
\hline & 0 & 0 & -2 / 5 & -1 & 1
\end{array} & -64
\end{array}
$$

For a variable in basis

$$
\max (6+\delta) x_{1}+8 x_{2}
$$

the perturbation goes unchanged in the red. costs.:

$$
-\frac{2}{5} \cdot 5-1 \cdot 4+1(6+\delta)
$$

For a variable not in basis it may change the sign of the reduced cost \Longrightarrow worth bringing in basis \Longrightarrow the δ term propagates to other columns
(II) Changes in RHS terms

$$
\left.\begin{array}{l:lllll}
& x_{1} & x_{2} & x_{3} & x_{4} & -z \\
\hdashline x_{3} & 5 & 10 & 1 & 0 & 0 \\
60 & \\
x_{4} & 4 & 4 & 0 & 1 & 0 \\
\hline & 40+\epsilon \\
\hdashline & 6 & 0 & 0 & 1 & 0
\end{array}\right]
$$

It would be more convenient to augment the second.
If $60+\delta \Longrightarrow$ all RHS terms change and we must check feasibility Which are the multipliers for the first row? $k_{1}=\frac{1}{5}, k_{2}=-\frac{1}{4}, k_{3}=0$
$\mathrm{I}: 1 / 5(60+\delta)-1 / 4 \cdot 40+0 \cdot 0=12+\delta / 5-10=2+\delta / 5$
II: $-1 / 5(60+\delta)+1 / 2 \cdot 40+0 \cdot 0=-60 / 5+20-\delta / 5=8-1 / 5 \delta$
Risk that RHS becomes negative
Eg: if $\delta=-20 \Longrightarrow$ tableau stays optimal but not feasible \Longrightarrow apply dual simplex

Graphical Representation

(III) Add a variable

$$
\begin{aligned}
\max 5 x_{0}+6 x_{1}+8 x_{2} & \\
6 x_{0}+5 x_{1}+10 x_{2} & \leq 60 \\
8 x_{0}+4 x_{1}+4 x_{2} & \leq 40 \\
x_{0}, x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Reduced cost of $x_{0} ? c_{j}-\sum \pi_{i} a_{i j}=-\frac{2}{5}+(-1) 8+1 \cdot 5=-\frac{27}{5}$
To make worth entering in basis:

- increase its cost
- decrease the amount in constraint II: $-2 / 5 \cdot 6-a_{20}+5>0$
(IV) Add a constraint

$$
\begin{aligned}
\max 6 x_{1}+8 x_{2} & \\
5 x_{1}+10 x_{2} & \leq 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
5 x_{1}+6 x_{2} & \leq 50 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Final tableau not in canonical form, need to iterate

$$
\begin{array}{c:ccccc}
& x_{1} & x_{2} & x_{3} & x_{4} & x_{5}-z \\
\hdashline x_{2} & 0 & 1 & 1 / 5 & -1 / 4 & 0 \\
x_{1} & 1 & 0 & -1 / 5 & 1 / 2 & 0 \\
\hdashline 2 \\
\hdashline & 0 & 0 & 5 / 5 & 6 / 4 & 1 \\
\hdashline & 0 & 0 & -2 / 5 & -1 & 0 \\
\hline & 1 & -64 \\
\hdashline & & -2 \\
\hdashline
\end{array}
$$

(V) change in a technological coefficient:

$$
\begin{array}{l:llllll}
& x_{1} & x_{2} & x_{3} & x_{4} & -z & b \\
\hdashline x_{3} & 5 & 10 & -\delta & 1 & 0 & 0 \\
60 \\
x_{4} & 4 & 4 & 0 & 1 & 0 & 40 \\
\hdashline & 6 & 8 & 0 & 0 & 1 & 0
\end{array}
$$

- first effect on its column
- then look at c
- finally look at b

Resume

Advantages of considering the dual formulation:

- proving optimality (although the simplex tableau can already do that)
- gives a way to check the correctness of results easily
- alternative solution method (ie, primal simplex on dual)
- sensitivity analysis
- solving P or D we solve the other for free
- certificate of infeasibility

