DM545 Linear and Integer Programming

Lecture 6 Revised Simplex Method

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Geometric Interpretation Farkas Lemma Revised Simplex Method

1. Geometric Interpretation

2. Farkas Lemma

Outline

Geometric Interpretation Farkas Lemma Revised Simplex Method

1. Geometric Interpretation

2. Farkas Lemma

Geometric Interpretation

Opt $x^* = (4, 6)$, $z^* = 10$. To prove this we need to prove that $y^* = (3/5, 1/5, 0)$ is a feasible solution of *D*:

$$\begin{array}{l} \min 14y_1 + 8y_2 + 10y_3 = w \\ 2y_1 - y_2 + 2y_3 \ge 1 \\ y_1 + 2y_2 - y_3 \ge 1 \\ y_1, y_2, y_3 \ge 0 \end{array}$$

and that $w^* = 10$

$$\frac{\frac{3}{5} \cdot 2x_1 + x_2 \le 14}{\frac{1}{5} \cdot -x_1 + 2x_2 \le 8} \frac{1}{x_1 + x_2 \le 10}$$

the feasibility region of P is a subset of the half plane $x_1 + x_2 \le 10$

 $(2v - w)x_1 + (v + 2w)x_2 \le 14v + 8w$ set of half planes that contain the feasibility region of P and pass through [4,6] $2v - w \ge 1$ v + 2w > 1

Example of boundary lines among those allowed:

$$v = 1, w = 0 \implies 2x_1 + x_2 = 14$$
$$v = 1, w = 1 \implies x_1 + 3x_2 = 22$$
$$v = 2, w = 1 \implies 3x_1 + 4x_2 = 36$$

Outline

Geometric Interpretation Farkas Lemma Revised Simplex Method

1. Geometric Interpretation

2. Farkas Lemma

Farkas Lemma

Theorem (Farkas Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Then,

either	1.	$\exists x \in \mathbb{R}^n : Ax = b \text{ and } x \ge 0$
or	П.	$\exists y \in \mathbb{R}^m : y^T A \ge 0^T \text{ and } y^T b < 0$

Easy to see that both I and II cannot occur together:

$$(0 \le) \quad \underbrace{(y^T A)}_{\ge 0} \underbrace{x}_{\ge 0} = y^T b \quad (< 0)$$

In general:

	The system	The system
	$A\mathbf{x} \leq \mathbf{b}$	$A\mathbf{x} = \mathbf{b}$
has a solution	$\mathbf{y} \ge 0, \mathbf{y}^T A \ge 0$	$\mathbf{y}^T A \ge 0^T$
$\mathbf{x} \ge 0$ iff	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$
has a solution	$\mathbf{y} \ge 0, \mathbf{y}^T A = 0$	$\mathbf{y}^T A = 0^T$
$\mathbf{x} \in \mathbb{R}^n$ iff	$\Rightarrow \mathbf{y}^T \mathbf{b} \ge 0$	$\Rightarrow \mathbf{y}^T \mathbf{b} = 0$

Geometric interpretation of Farkas L.

Geometric Interpretation Farkas Lemma Revised Simplex Method

Linear combination of a_i with nonnegative terms generates a convex cone:

 $\lambda_1 a_1 + \ldots + \lambda_n a_n, \lambda_1, \ldots, \lambda_n \geq 0$

intersection of many $ax \le 0$ polyhedral cone: $C = \{x \mid Ax \le 0\}$ Convex hull of rays $p_i = \{\lambda_i a_i, \lambda_i \ge 0\}$

Either point b lies in convex cone C or \exists hyperplane h passing through point $0 \ h = \{x \in \mathbb{R}^m : y^T x = 0\}$ for $y \in \mathbb{R}^m$ such that all vectors a_1, \ldots, a_n (and thus C) lie on one side and b lies (strictly) on the other side (ie, $y^T a_i \ge 0, \forall i = 1 \ldots n$ and $y^T b < 0$). Proof:

We prove: that the system $Ax \leq b$ has no solution iff there is a y such that:

$A^{T}y = 0^{T}$ $y \ge 0$ $b^{T}y < 0$		(*)
max 0	min $b^T y$	
$Ax \leq b$	$A^T y = 0$	
	$y \ge 0$	

Clearly dual is feasible (ie, y = 0). Hence the primal is infeasible iff the dual is unbounded. The dual is unbounded iff there exists a sol to (*). Starting from y = 0 the simplex on the dual problem, would find an unbounded improvement Δy such that (*) is true. Note that:

- ► There are other proofs for the Farkas Lemma that use analysis
- ▶ The Farkas Lemma can be used to prove the strong duality theorem

Certificate of Infeasibility

Farkas Lemma provides a way to certificate infeasibility. Given a certificate y^* it is easy to check the conditions:

$$\begin{array}{l} A^{T}y^{*} \geq 0\\ by^{*} < 0 \end{array}$$

Proof: (by contradiction) why y^* would be a certificate of infeasibility? If $\exists: Ax^* = b, x^* \ge 0$, then:

> $A^T y^* \ge 0 \text{ and } x^* \ge 0 \implies (y^*)^T A x^* \ge 0$ $(0 \le) \quad (y^*)^T A x^* = (y^*)^T b \quad (<0)$

General form:

$$\begin{array}{ll} \max c^{T} x & \text{infeasible} \Leftrightarrow \exists y^{*} \\ A_{1}x = b_{1} & & \\ A_{2}x \leq b_{2} & & b_{1}^{T}y_{1} + b_{2}^{T}y_{2} + b_{3}^{T}y_{3} > 0 \\ A_{3}x \geq b_{3} & & A_{1}^{T}y_{1} + A_{2}^{T}y_{2} + A_{3}^{T}y_{3} \leq 0 \\ & x \geq 0 & & y_{2} \leq 0 \\ & & y_{3} \geq 0 \end{array}$$

Example:

 $y_1 = -1, y_2 = 1$ is a valid certificate.

- Observe that it is not unique!
- ▶ Note that it can always be reported in place of the dual solution.
- ► To repair infeasibility we should change the primal at least so much as that the certificate of infeasibility is no longer valid.
- Only constraints with $y_i \neq 0$ the infeasibility of the certificate

Outline

Geometric Interpretation Farkas Lemma Revised Simplex Method

1. Geometric Interpretation

2. Farkas Lemma

Revised Simplex Method

Crucial: pivoting (ie, updating) the tableaux us the most costly part. Several ways to carry out this efficiently, requires matrix description of simplex.

- $\max\{c^T x \mid Ax \le b, x \ge 0\}$
- $\blacktriangleright B = \{1 \dots m\}$
- $\blacktriangleright N = \{n+1 \dots n+m\}$
- $\blacktriangleright A_B = [A_1 \dots A_m]$
- $\blacktriangleright A_N = [A_{n+1} \dots A_{n+m}]$

Standard form

$$\begin{bmatrix} A_N & A_B & 0 & b \\ \hline C_N & C_B & 1 & 0 \end{bmatrix}$$

basic feasible solution:

$$Ax = A_N x_N + A_B x_B = b$$
$$A_B x_B = b - A_N x_N$$
$$x_B = A_B^{-1} b - A_B^{-1} A_N x_N$$

► A_B lin. indep.

$$z = c_{X} = c_{B}(A_{B}^{-1}b - A_{B}^{-1}A_{N}x_{N}) + c_{N}x_{N} =$$

= $c_{B}A_{B}^{-1}b + (c_{N} - c_{B}\underbrace{A_{B}^{-1}A_{N}}_{\overline{A}})x_{N}$

Canonical form

$$\begin{bmatrix} A_B^{-1}A_N & I & 0 & A_B^{-1}b \\ c_N^{T} - C_B^{T}A_B^{-1}A_N & 0 & 1 & -c_B^{T}A_B^{-1}b \end{bmatrix}$$

We do not need to compute all elements of \bar{A}

$$\begin{array}{ccc} \max & x_1 + x_2 \\ & -x_1 + x_2 \leq 1 \\ & x_1 & \leq 3 \\ & x_2 \leq 2 \\ & x_1, x_2 \geq 0 \end{array}$$

$$\begin{array}{rll} \max & x_1 + x_2 \\ & -x_1 + x_2 + x_3 & = 1 \\ & x_1 & + x_4 & = 3 \\ & x_2 & + x_5 = 2 \\ & & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

T	x1	T	x2	T	xЗ	Т	x4	T	x5	T	-z	T	b	Τ
ŀ		+-		+		+		+		+.		+		- [
T	-1	T	1	T	1	Т	0	T	0	T	0	T	1	Τ
T	1	T	0	T	0	Т	1	T	0	T	0	T	З	Τ
T	0	Т	1	Т	0	Т	0	T	1	T	0	T	2	L
ŀ		-+-		+		+ -		+		+ -		+		- [
T	1	T	1	T	0	Т	0	T	0	T	1	T	0	Τ

After two iterations

	x1	T	x2	T	xЗ	I.	x4	T	x5		-z	I.	ъ	I.
1.		-+-		+		+ -		+		.+.		+.		-1
Ι	1	T	0	T	1	Т	0	T	-1	Ι	0	I.	1	Ι
Ι	0	T	1	T	0	Т	0	T	-1	Ι	0	I.	2	Ι
Τ	0	T	0	Т	-1	Т	1	T	1	Τ	0	Т	2	L
++++														
T	0	Т	0	Т	1	Т	0	Т	-2	T	1	Т	3	T

▶ Basic variables *x*₁, *x*₂, *x*₄. Non basic: *x*₃, *x*₅

$$A_{B} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad A_{N} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \quad x_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{4} \end{bmatrix} \quad x_{N} = \begin{bmatrix} x_{3} \\ x_{5} \end{bmatrix}$$
$$c_{B} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \quad c_{N} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

Entering variable:

in std. we look at tableau, in revised we need to compute: $c_N - c_B A_B^{-1} A_N$

- 1. find $y = c_B A_B^{-1}$ by solving $yA_B = c_B$ (the latter can be done more efficiently)
- 2. calculate $c_N y^T A_N$

Geometric Interpretation Farkas Lemma Revised Simplex Method

Step 1:

$$\begin{bmatrix} y_1 \ y_2 \ y_3 \end{bmatrix} \begin{bmatrix} -1 \ 1 \ 0 \\ 1 \ 0 \ 1 \ 0 \end{bmatrix} = \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 \ 0 \ 1 \\ 0 \ 1 \ 0 \end{bmatrix} \begin{bmatrix} -1 \ 0 \ 1 \\ 1 \ 1 \ -1 \end{bmatrix} \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$$

Step 2:

$$\begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

(Note that they can be computed individually: $c_j - ya_{ij} > 0$) Let's take the first we encounter x_3

Leaving variable

we increase variable by largest feasible amount θ

I: $x_1 + x_3 - x_5 = 1$ II: $-x_3 + x_4 + x_5 = 2$ $x_1 = 1 - x_3$ $x_4 = 2 + x_3$

$$\begin{aligned} x_B &= x_B^* - A_B^{-1} A_N x_N \\ x_B &= x_B^* - d\theta \end{aligned} \qquad d \text{ is the column of } A_B^{-1} A_N \text{ that} \\ \text{corresponds to the entering variable,} \\ \text{ie, } d &= A_B^{-1} a \text{ where } a \text{ is the entering} \\ \text{column} \end{aligned}$$

3. Find θ such that x_B stays positive:
Find $d &= A_B^{-1} a$ by solving $A_B d = a$

Step 3:

$$\begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \implies d = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \implies x_B = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \theta \ge 0$$

 $2 - \theta \ge 0 \implies \theta \le 2 \rightsquigarrow x_4$ leaves

► So far we have done computations, but now we save the pivoting update. The update of A_B is done by replacing the leaving column by the entering column.

$$x_{B}^{*} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 2 \\ 0 \end{bmatrix} \begin{pmatrix} x_{1} - d_{1}\theta \\ x_{2} - d_{2}\theta \\ \theta \end{bmatrix} A_{B} = \begin{bmatrix} -1 \ 1 \ 1 \\ 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \end{bmatrix}$$

- ► Many implementations depending how yA_B = c_B and A_Bd = a are solved. They are in fact solved from scratch.
- many operations saved especially if many variables!
- special ways to call the matrix A from memory

• better control over numerical issues since A_B^{-1} can be recomputed.

Solving system of equations

- Bx = b solved without computing B^{-1}
- ▶ it can be shown that B = L'D⁻¹U, where L' has elements ≠ 0 only below the diagonal, D is a diagonal matrix and U has elements ≠ 0 only above the diagonal matrix
- ▶ it can be rewritten as B = LU, L lower triangular matrix, U upper triangular matrix, ie, LU-factorization
- LUx = b: setting y = Ux then
 - 1. Ly = b can be solved easily by forward substitution
 - 2. Ux = y can be solved easily by backward substitution

Eta Factorization of the Basis

Let $A_B = B$, kth iteration B_k be the matrix with col p differing from B_{k-1} Column p is the a column appearing in $B_{k-1}d = a$ solved at 3) Hence:

 $B_k = B_{k-1}E_k$

 E_k is the eta matrix differing from id. matrix in only one column (insert example) No matter how we solve $yB_{k-1} = c_B$ and $B_{k-1}d = a$, their update always relays on $B_k = B_{k-1}E_k$ with E_k available. Plus when initial basis by slack variable $B_0 = I$ and $B_1 = E_1, B_2 = E_1E_2\cdots$:

 $B_k = E_1 E_2 \dots E_k$ eta factorization

 $((((yE_1)E_2)E_3)\cdots)E_k = c_b \quad uE_4 = c_B \ v = E_3 = u \ wE_2 = v \ yE_1 = w$ $(E_1(E_2\cdots E_k d)) = a \quad E_1u = a \ E_2v = u \ E_3w = v \ E_4d = w$

Geometric Interpretation Farkas Lemma Revised Simplex Method

1. Geometric Interpretation

2. Farkas Lemma

Summary

Further topics in Linear Programming

- Ellipsoid method: cannot compete in practice but polynomial time (Khachyian, 1979)
- Interior point method(s) comptetitve with simplex and polynomial in some versions
- Lagrangian relaxation
- Decomposition methods:
 - Dantzig Wolfe decomposition
 - Benders decomposition