DM545
 Linear and Integer Programming

Lecture 6
 Revised Simplex Method

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Geometric Interpretation

2. Farkas Lemma
3. Revised Simplex Method

Geometric Interpretation

Farkas Lemma
Revised Simplex Method

1. Geometric Interpretation

2. Farkas Lemma

3. Revised Simplex Method

Geometric Interpretation

$$
\begin{aligned}
\max +x_{2} & \\
2 x_{1}+x_{2} & \leq 14 \\
-x_{1}+2 x_{2} & \leq 8 \\
2 x_{1}-x_{2} & \leq 10 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Opt $x^{*}=(4,6), z^{*}=10$. To prove this we need to prove that $y^{*}=(3 / 5,1 / 5,0)$ is a feasible solution of D :

$$
\begin{aligned}
\min 14 y_{1}+8 y_{2}+10 y_{3} & =w \\
2 y_{1}-y_{2}+2 y_{3} & \geq 1 \\
y_{1}+2 y_{2}-y_{3} & \geq 1 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

and that $w^{*}=10$

$$
\begin{aligned}
\frac{3}{5} \cdot 2 x_{1}+x_{2} & \leq 14 \\
\frac{1}{5} \cdot-x_{1}+2 x_{2} & \leq 8 \\
\hline x_{1}+x_{2} & \leq 10
\end{aligned}
$$

the feasibility region of P is a subset of the half plane $x_{1}+x_{2} \leq 10$

$(2 v-w) x_{1}+(v+2 w) x_{2} \leq 14 v+8 w$ set of half planes that contain the feasibility region of P and pass through $[4,6$]

$$
\begin{aligned}
& 2 v-w \geq 1 \\
& v+2 w \geq 1
\end{aligned}
$$

Example of boundary lines among those allowed:

$$
\begin{aligned}
& v=1, w=0 \Longrightarrow 2 x_{1}+x_{2}=14 \\
& v=1, w=1 \Longrightarrow x_{1}+3 x_{2}=22 \\
& v=2, w=1 \Longrightarrow 3 x_{1}+4 x_{2}=36
\end{aligned}
$$

Outline

Geometric Interpretation

Farkas Lemma

Revised Simplex Method

1. Geometric Interpretation
2. Farkas Lemma
3. Revised Simplex Method

Farkas Lemma

Theorem (Farkas Lemma)
Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. Then,

$$
\begin{aligned}
\text { either I. } & \exists x \in \mathbb{R}^{n}: A x=b \text { and } x \geq 0 \\
\text { or II. } & \exists y \in \mathbb{R}^{m}: y^{\top} A \geq 0^{T} \text { and } y^{\top} b<0
\end{aligned}
$$

Easy to see that both I and II cannot occur together:

$$
(0 \leq) \underbrace{\left(y^{\top} A\right)}_{\geq 0} \underbrace{x}_{\geq 0}=y^{\top} b \quad(<0)
$$

In general:

	The system	The system
	$A \mathbf{x} \leq \mathbf{b}$	$A \mathbf{x}=\mathbf{b}$
has a solution	$\mathbf{y} \geq \mathbf{0}, \mathbf{y}^{T} A \geq \mathbf{0}$	$\mathbf{y}^{T} A \geq \mathbf{0}^{T}$
$\mathbf{x} \geq \mathbf{0}$ iff	$\Rightarrow \mathbf{y}^{T} \mathbf{b} \geq 0$	$\Rightarrow \mathbf{y}^{T} \mathbf{b} \geq 0$
has a solution	$\mathbf{y} \geq \mathbf{0}, \mathbf{y}^{T} A=\mathbf{0}$	$\mathbf{y}^{T} A=\mathbf{0}^{T}$
$\mathbf{x} \in \mathbb{R}^{n}$ iff	$\Rightarrow \mathbf{y}^{T} \mathbf{b} \geq 0$	$\Rightarrow \mathbf{y}^{T} \mathbf{b}=0$

Geometric interpretation of Farkas L.

Linear combination of a_{i} with nonnegative terms generates a convex cone:

$$
\lambda_{1} a_{1}+\ldots+\lambda_{n} a_{n}, \lambda_{1}, \ldots, \lambda_{n} \geq 0
$$

intersection of many $a x \leq 0$ polyhedral cone: $C=\{x \mid A x \leq 0\}$
Convex hull of rays $p_{i}=\left\{\lambda_{i} a_{i}, \lambda_{i} \geq 0\right\}$

Either point b lies in convex cone C
or
\exists hyperplane h passing through point $0 h=\left\{x \in \mathbb{R}^{m}: y^{\top} x=0\right\}$ for $y \in \mathbb{R}^{m}$ such that all vectors a_{1}, \ldots, a_{n} (and thus C) lie on one side and b lies (strictly) on the other side (ie, $y^{\top} a_{i} \geq 0, \forall i=1 \ldots n$ and $y^{\top} b<0$).

Proof:

We prove: that the system $A x \leq b$ has no solution iff there is a y such that:

$$
\begin{array}{cc}
A^{T} y=0^{T} & \\
y \geq 0 & \tag{*}\\
b^{T} y<0 & \\
& \min b^{T} y \\
\max 0 & A^{T} y=0 \\
A x \leq b & y \geq 0
\end{array}
$$

Clearly dual is feasible (ie, $y=0$).
Hence the primal is infeasible iff the dual is unbounded.
The dual is unbounded iff there exists a sol to $\left(^{*}\right)$.
Starting from $y=0$ the simplex on the dual problem, would find an unbounded improvement Δy such that $\left(^{*}\right)$ is true.
Note that:

- There are other proofs for the Farkas Lemma that use analysis
- The Farkas Lemma can be used to prove the strong duality theorem

Certificate of Infeasibility

Farkas Lemma provides a way to certificate infeasibility. Given a certificate y^{*} it is easy to check the conditions:

$$
\begin{aligned}
A^{T} y^{*} & \geq 0 \\
b y y^{*} & <0
\end{aligned}
$$

Proof: (by contradiction)
why y^{*} would be a certificate of infeasibility?
If \exists : $A x^{*}=b, x^{*} \geq 0$, then:

$$
\begin{aligned}
& A^{T} y^{*} \geq 0 \text { and } x^{*} \geq 0 \\
& (0 \leq) \quad\left(y^{*}\right)^{T} A x^{*}=\left(y^{*}\right)^{T} b \quad(<0)
\end{aligned}
$$

$$
\Longrightarrow\left(y^{*}\right)^{T} A x^{*} \geq 0
$$

General form:

$$
\begin{aligned}
\max c^{T} x & \\
A_{1} x & =b_{1} \\
A_{2} x & \leq b_{2} \\
A_{3} x & \geq b_{3} \\
x & \geq 0
\end{aligned}
$$

$$
\text { infeasible } \Leftrightarrow \exists y^{*}
$$

$$
\begin{aligned}
b_{1}^{T} y_{1}+b_{2}^{T} y_{2}+b_{3}^{T} y_{3} & >0 \\
A_{1}^{T} y_{1}+A_{2}^{T} y_{2}+A_{3}^{T} y_{3} & \leq 0 \\
y_{2} & \leq 0 \\
y_{3} & \geq 0
\end{aligned}
$$

Example:

$$
\begin{aligned}
\max c^{T} x & \\
x_{1} & \leq 1 \\
x_{1} & \geq 2
\end{aligned}
$$

$$
\begin{aligned}
& b_{1}^{T} y_{1}+b_{2}^{T} y_{2}>0 \quad y_{1}+2 y_{2}>0 \\
& A_{1}^{T} y_{1}+A_{2}^{T} y_{2} \leq 0 \\
& y_{1} \leq 0 \\
& y_{2} \geq 0 \\
& \begin{aligned}
y_{1}+2 y_{2} & >0 \\
y_{1}+y_{2} & \leq 0 \\
y_{1} & \leq 0 \\
y_{2} & \geq 0
\end{aligned}
\end{aligned}
$$

$y_{1}=-1, y_{2}=1$ is a valid certificate.

- Observe that it is not unique!
- Note that it can always be reported in place of the dual solution.
- To repair infeasibility we should change the primal at least so much as that the certificate of infeasibility is no longer valid.
- Only constraints with $y_{i} \neq 0$ the infeasibility of the certificate

Outline

1. Geometric Interpretation
2. Farkas Lemma
3. Revised Simplex Method

Revised Simplex Method

Crucial: pivoting (ie, updating) the tableaux us the most costly part. Several ways to carry out this efficiently, requires matrix description of simplex.

- $\max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\}$
- $B=\{1 \ldots m\}$
- $N=\{n+1 \ldots n+m\}$
- $A_{B}=\left[A_{1} \ldots A_{m}\right]$
- $A_{N}=\left[A_{n+1} \ldots A_{n+m}\right]$

Standard form

$$
\left[\begin{array}{c:c:c:c}
& & : \\
A_{N} & A_{B} & 0 & b \\
\hdashline c_{N} & c_{B} & 1 & 0
\end{array}\right]
$$

basic feasible solution:

$$
\begin{array}{rlrl}
A x & =A_{N} x_{N}+A_{B} x_{B}=b & & x_{N}=0 \\
A_{B} x_{B} & =b-A_{N} x_{N} & & A_{B} \text { lin. indep. } \\
x_{B} & =A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} & & x_{B} \geq 0 \\
z=c x & =c_{B}\left(A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N}\right)+c_{N} x_{N}= \\
& =c_{B} A_{B}^{-1} b+(c_{N}-c_{B} \underbrace{A_{B}^{-1} A_{N}}_{\bar{A}}) x_{N}
\end{array}
$$

Canonical form

$$
\left[\begin{array}{c:c:c}
A_{B}^{-1} A_{N} & \prime & 0 \\
\hdashline c_{N}^{T}-C_{B}^{T} A_{B}^{-1} A_{N} b & 1 & -c_{B}^{T} A_{B}^{-1} \bar{b}
\end{array}\right]
$$

We do not need to compute all elements of \bar{A}

$$
\max \begin{aligned}
x_{1}+x_{2} & \\
-x_{1}+x_{2} & \leq 1 \\
x_{1} & \leq 3 \\
x_{2} & \leq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

After two iterations

- Basic variables x_{1}, x_{2}, x_{4}. Non basic: x_{3}, x_{5}

$$
\begin{aligned}
& A_{B}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad A_{N}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \quad x_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right] \quad x_{N}=\left[\begin{array}{l}
x_{3} \\
x_{5}
\end{array}\right] \\
& c_{B}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \quad c_{N}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
\end{aligned}
$$

- Entering variable:
in std. we look at tableau, in revised we need to compute: $c_{N}-c_{B} A_{B}^{-1} A_{N}$

1. find $y=c_{B} A_{B}^{-1}$ by solving $y A_{B}=c_{B}$ (the latter can be done more efficiently)
2. calculate $c_{N}-y^{\top} A_{N}$

Step 1:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]}
\end{aligned}
$$

Step 2:

$$
\left[\begin{array}{ll}
0 & 0
\end{array}\right]-\left[\begin{array}{lll}
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2
\end{array}\right]
$$

(Note that they can be computed individually: $c_{j}-y a_{i j}>0$) Let's take the first we encounter x_{3}

- Leaving variable we increase variable by largest feasible amount θ

$$
\begin{gathered}
\text { I: } x_{1}+x_{3}-x_{5}=1 \\
\text { II: }-x_{3}+x_{4}+x_{5}=2 \\
x_{B}=x_{B}^{*}-A_{B}^{-1} A_{N} x_{N} \\
x_{B}=x_{B}^{*}-d \theta
\end{gathered}
$$

$$
\begin{aligned}
& x_{1}=1-x_{3} \\
& x_{4}=2+x_{3}
\end{aligned}
$$

d is the column of $A_{B}^{-1} A_{N}$ that corresponds to the entering variable, ie, $d=A_{B}^{-1} a$ where a is the entering column
3. Find θ such that x_{B} stays positive:

Find $d=A_{B}^{-1}$ a by solving $A_{B} d=a$
Step 3:

$$
\begin{aligned}
& {\left[\begin{array}{l}
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \Longrightarrow d=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \Longrightarrow x_{B}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]-\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \theta \geq 0} \\
& 2-\theta \geq 0 \Longrightarrow \theta \leq 2 \rightsquigarrow x_{4} \text { leaves }
\end{aligned}
$$

- So far we have done computations, but now we save the pivoting update. The update of A_{B} is done by replacing the leaving column by the entering column.

$$
x_{B}^{*}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right] \begin{aligned}
& x_{1}-d_{1} \theta \\
& x_{2}-d_{2} \theta \\
& \theta
\end{aligned} \quad A_{B}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- Many implementations depending how $y A_{B}=c_{B}$ and $A_{B} d=a$ are solved. They are in fact solved from scratch.
- many operations saved especially if many variables!
- special ways to call the matrix A from memory
- better control over numerical issues since A_{B}^{-1} can be recomputed.

Solving system of equations

- $B x=b$ solved without computing B^{-1}
- it can be shown that $B=L^{\prime} D^{-1} U$, where L^{\prime} has elements $\neq 0$ only below the diagonal, D is a diagonal matrix and U has elements $\neq 0$ only above the diagonal matrix
- it can be rewritten as $B=L U, L$ lower triangular matrix, U upper triangular matrix, ie, LU-factorization
- $L U_{x}=b$: setting $y=U_{x}$ then

1. $L y=b$ can be solved easily by forward substitution
2. $U x=y$ can be solved easily by backward substitution

Eta Factorization of the Basis

Let $A_{B}=B$, k th iteration
B_{k} be the matrix with col p differing from B_{k-1}
Column p is the a column appearing in $B_{k-1} d=a$ solved at 3) Hence:

$$
B_{k}=B_{k-1} E_{k}
$$

E_{k} is the eta matrix differing from id. matrix in only one column (insert example)
No matter how we solve $y B_{k-1}=c_{B}$ and $B_{k-1} d=a$, their update always relays on $B_{k}=B_{k-1} E_{k}$ with E_{k} available.
Plus when initial basis by slack variable $B_{0}=I$ and $B_{1}=E_{1}, B_{2}=E_{1} E_{2} \cdots$:

$$
B_{k}=E_{1} E_{2} \ldots E_{k} \quad \text { eta factorization }
$$

$$
\begin{array}{cl}
\left.\left(\left(\left(y E_{1}\right) E_{2}\right) E_{3}\right) \cdots\right) E_{k}=c_{b} & u E_{4}=c_{B} v=E_{3}=u w E_{2}=v y E_{1}=w \\
\left(E_{1}\left(E_{2} \cdots E_{k} d\right)\right)=a & E_{1} u=a E_{2} v=u E_{3} w=v E_{4} d=w
\end{array}
$$

Resume

1. Geometric Interpretation

2. Farkas Lemma
3. Revised Simplex Method

Summary

Further topics in Linear Programming

- Ellipsoid method: cannot compete in practice but polynomial time (Khachyian, 1979)
- Interior point method(s) comptetitve with simplex and polynomial in some versions
- Lagrangian relaxation
- Decomposition methods:
- Dantzig Wolfe decomposition
- Benders decomposition

