
DM545

Linear and Integer Programming

Lecture 6
Revised Simplex Method

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Geometric Interpretation
Farkas Lemma
Revised Simplex MethodOutline

1. Geometric Interpretation

2. Farkas Lemma

3. Revised Simplex Method

2



Geometric Interpretation
Farkas Lemma
Revised Simplex MethodOutline

1. Geometric Interpretation

2. Farkas Lemma

3. Revised Simplex Method

3



Geometric Interpretation
Farkas Lemma
Revised Simplex MethodGeometric Interpretation

max x1 + x2
2x1 + x2 ≤ 14
−x1 + 2x2 ≤ 8
2x1 − x2 ≤ 10

x1, x2 ≥ 0

x1 + x2 2x1 + x2 ≤ 14

−x1 + 2x2 ≤ 8
2x1 − x2 ≤ 10

x1

x2

Opt x∗ = (4, 6), z∗ = 10. To prove this we need to prove that
y∗ = (3/5, 1/5, 0) is a feasible solution of D:

min 14y1 + 8y2 + 10y3 = w
2y1 − y2 + 2y3 ≥ 1
y1 + 2y2 − y3 ≥ 1

y1, y2, y3 ≥ 0

and that w∗ = 10
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3
5 · 2x1 + x2 ≤ 14
1
5 · −x1 + 2x2 ≤ 8

x1 + x2 ≤ 10

the feasibility region of P is a subset of
the half plane x1 + x2 ≤ 10

x1 + x2 ≤ 10x1

x2

(2v − w)x1 + (v + 2w)x2 ≤ 14v + 8w set of half planes that contain the
feasibility region of P and pass through [4, 6]

2v − w ≥ 1
v + 2w ≥ 1

Example of boundary lines among
those allowed:

v = 1,w = 0 =⇒ 2x1 + x2 = 14

v = 1,w = 1 =⇒ x1 + 3x2 = 22

v = 2,w = 1 =⇒ 3x1 + 4x2 = 36 x1 + x2 ≤ 10

x1 + 3x2 = 22

2x1 + x2 = 143x1 + 4x2 = 36x1

x2
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Theorem (Farkas Lemma)

Let A ∈ Rm×n and b ∈ Rm. Then,

either I . ∃x ∈ Rn :Ax = b and x ≥ 0

or II . ∃y ∈ Rm :yTA ≥ 0T and yTb < 0

Easy to see that both I and II cannot occur together:

(0 ≤) (yTA)︸ ︷︷ ︸
≥0

x︸︷︷︸
≥0

= yTb (< 0)

In general:
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Linear combination of ai with nonnegative terms generates a convex cone:

λ1a1 + . . .+ λnan, λ1, . . . , λn ≥ 0

intersection of many ax ≤ 0 polyhedral cone: C = {x | Ax ≤ 0}
Convex hull of rays pi = {λiai , λi ≥ 0}

Either point b lies in convex cone C
or ∃ hyperplane h passing through point 0 h = {x ∈ Rm : yT x = 0}

for y ∈ Rm such that all vectors a1, . . . , an (and thus C ) lie on one
side and b lies (strictly) on the other side (ie, yTai ≥ 0,∀i = 1 . . . n
and yTb < 0).
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Proof:
We prove: that the system Ax ≤ b has no solution iff there is a y such that:

AT y = 0T

y ≥ 0
bT y < 0

(*)

max 0
Ax ≤ b

min bT y

AT y = 0
y ≥ 0

Clearly dual is feasible (ie, y = 0).
Hence the primal is infeasible iff the dual is unbounded.
The dual is unbounded iff there exists a sol to (*).
Starting from y = 0 the simplex on the dual problem, would find an
unbounded improvement ∆y such that (*) is true.
Note that:

I There are other proofs for the Farkas Lemma that use analysis
I The Farkas Lemma can be used to prove the strong duality theorem
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Farkas Lemma provides a way to certificate infeasibility.
Given a certificate y∗ it is easy to check the conditions:

AT y∗ ≥ 0
by∗ < 0

Proof: (by contradiction)
why y∗ would be a certificate of infeasibility?
If ∃: Ax∗ = b, x∗ ≥ 0, then:

AT y∗ ≥ 0 and x∗ ≥ 0 =⇒ (y∗)TAx∗ ≥ 0

(0 ≤) (y∗)TAx∗ = (y∗)Tb (< 0)
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General form:

max cT x
A1x = b1
A2x ≤ b2
A3x ≥ b3

x ≥ 0

infeasible ⇔ ∃y∗

bT
1 y1 + bT

2 y2 + bT
3 y3 > 0

AT
1 y1 + AT

2 y2 + AT
3 y3 ≤ 0

y2 ≤ 0
y3 ≥ 0

Example:

max cT x
x1 ≤ 1
x1 ≥ 2

bT
1 y1 + bT

2 y2 > 0
AT

1 y1 + AT
2 y2 ≤ 0

y1 ≤ 0
y2 ≥ 0

y1 + 2y2 > 0
y1 + y2 ≤ 0

y1 ≤ 0
y2 ≥ 0

y1 = −1, y2 = 1 is a valid certificate.
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I Observe that it is not unique!
I Note that it can always be reported in place of the dual solution.
I To repair infeasibility we should change the primal at least so much as

that the certificate of infeasibility is no longer valid.
I Only constraints with yi 6= 0 the infeasibility of the certificate
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Crucial: pivoting (ie, updating) the tableaux us the most costly part.
Several ways to carry out this efficiently, requires matrix description of
simplex.

I max{cT x | Ax ≤ b, x ≥ 0}
I B = {1 . . .m}
I N = {n + 1 . . . n + m}
I AB = [A1 . . .Am]

I AN = [An+1 . . .An+m]

Standard form AN AB 0 b

cN cB 1 0


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Ax = ANxN + ABxB = b
ABxB = b − ANxN

xB = A−1
B b − A−1

B ANxN

basic feasible solution:
I XN = 0
I AB lin. indep.
I XB ≥ 0

z = cx = cB(A−1
B b − A−1

B ANxN) + cNxN =

= cBA−1
B b + (cN − cB A−1

B AN︸ ︷︷ ︸
Ā

)xN

Canonical form A−1
B AN I 0 A−1

B b

cT
N − CT

B A−1
B AN 0 1 −cT

B A−1
B b


We do not need to compute all elements of Ā
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max x1 + x2

−x1 + x2 ≤ 1
x1 ≤ 3

x2 ≤ 2
x1, x2 ≥ 0

max x1 + x2

−x1 + x2 + x3 = 1
x1 + x4 = 3

x2 + x5 = 2
x1, x2, x3, x4, x5 ≥ 0

| x1 | x2 | x3 | x4 | x5 | -z | b |
|----+----+----+----+----+----+---|
| -1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 3 |
| 0 | 1 | 0 | 0 | 1 | 0 | 2 |
|----+----+----+----+----+----+---|
| 1 | 1 | 0 | 0 | 0 | 1 | 0 |

After two iterations
| x1 | x2 | x3 | x4 | x5 | -z | b |
|----+----+----+----+----+----+---|
| 1 | 0 | 1 | 0 | -1 | 0 | 1 |
| 0 | 1 | 0 | 0 | -1 | 0 | 2 |
| 0 | 0 | -1 | 1 | 1 | 0 | 2 |
|----+----+----+----+----+----+---|
| 0 | 0 | 1 | 0 | -2 | 1 | 3 |
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I Basic variables x1, x2, x4. Non basic: x3, x5

AB =

−1 1 0
1 0 1
0 1 0

 AN =

1 0
0 0
0 1

 xB =

x1
x2
x4

 xN =

[
x3
x5

]

cB =
[
1 1 0

]
cN =

[
0 0
]

I Entering variable:
in std. we look at tableau, in revised we need to compute: cN − cBA−1

B AN

1. find y = cBA−1
B by solving yAB = cB (the latter can be done more

efficiently)
2. calculate cN − yTAN
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Step 1:

[
y1 y2 y3

] −1 1 0
1 0 1
0 1 0

 =
[
1 1 0

]
−1 0 1

0 0 1
1 1 −1

 [1 1 0
]

=

−10
2


Step 2:

[
0 0
]
−
[
−1 0 2

] 1 0
0 0
0 1

 =
[
1 2
]

(Note that they can be computed individually: cj − yaij > 0)
Let’s take the first we encounter x3
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I Leaving variable
we increase variable by largest feasible amount θ

I: x1 + x3 − x5 = 1 x1 = 1− x3

II: − x3 + x4 + x5 = 2 x4 = 2 + x3

xB = x∗B − A−1
B ANxN

xB = x∗B − dθ
d is the column of A−1

B AN that
corresponds to the entering variable,
ie, d = A−1

B a where a is the entering
column

3. Find θ such that xB stays positive:
Find d = A−1

B a by solving ABd = a

Step 3:

d1
d2
d3

 =

−1 0 1
0 0 1
1 1 −1

10
0

 =⇒ d =

−10
1

 =⇒ xB =

12
2

−
−10

1

 θ ≥ 0

2− θ ≥ 0 =⇒ θ ≤ 2  x4 leaves
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I So far we have done computations, but now we save the pivoting
update. The update of AB is done by replacing the leaving column by
the entering column.

x∗B =

x1
x2
x3

 =

32
2

 x1 − d1θ
x2 − d2θ
θ

AB =

−1 1 1
1 0 0
0 1 0



I Many implementations depending how yAB = cB and ABd = a are
solved. They are in fact solved from scratch.

I many operations saved especially if many variables!

I special ways to call the matrix A from memory

I better control over numerical issues since A−1
B can be recomputed.
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LU-factorization

I Bx = b solved without computing B−1

I it can be shown that B = L′D−1U, where L′ has elements 6= 0 only
below the diagonal, D is a diagonal matrix and U has elements 6= 0 only
above the diagonal matrix

I it can be rewritten as B = LU, L lower triangular matrix, U upper
triangular matrix, ie, LU-factorization

I LUx = b: setting y = Ux then
1. Ly = b can be solved easily by forward substitution
2. Ux = y can be solved easily by backward substitution
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Let AB = B, kth iteration
Bk be the matrix with col p differing from Bk−1
Column p is the a column appearing in Bk−1d = a solved at 3)
Hence:

Bk = Bk−1Ek

Ek is the eta matrix differing from id. matrix in only one column
(insert example)
No matter how we solve yBk−1 = cB and Bk−1d = a, their update always
relays on Bk = Bk−1Ek with Ek available.
Plus when initial basis by slack variable B0 = I and B1 = E1,B2 = E1E2 · · · :

Bk = E1E2 . . .Ek eta factorization

((((yE1)E2)E3) · · · )Ek = cb uE4 = cB v = E3 = u wE2 = v yE1 = w
(E1(E2 · · ·Ekd)) = a E1u = a E2v = u E3w = v E4d = w
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Further topics in Linear Programming

I Ellipsoid method: cannot compete in practice but polynomial time
(Khachyian, 1979)

I Interior point method(s) comptetitve with simplex and polynomial in
some versions

I Lagrangian relaxation

I Decomposition methods:

I Dantzig Wolfe decomposition

I Benders decomposition
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