DM545
 Linear and Integer Programming

Lecture 8
 IP Modeling
 Formulations, Relaxations

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

Outline

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

Outline

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

Outline

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

Outline

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

- Find the cheapest movement for a stacker crane that must pick up and drop objects
- n cities, $c_{i j}$ cost of travel

Variables:

$$
x_{i j}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right.
$$

Objective:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

Constraints:

$$
\begin{aligned}
& \sum_{j: j \neq i} x_{i j}=1 \\
& \sum_{i: i \neq j} x_{i j}=1
\end{aligned}
$$

$$
\begin{aligned}
& \forall i=1, \ldots, n \\
& \forall j=1, \ldots, n
\end{aligned}
$$

- cut set constraints

$$
\sum_{i \in S} \sum_{j \neq S} x_{i j} \geq 1
$$

$$
\forall S \subset N, s \neq \emptyset
$$

- subtour elimination constraints

$$
\sum_{i \in S} \sum_{j \in S} x_{i j} \leq|S|-1 \quad \forall S \subset N, 2 \leq|S| \leq n-1
$$

Outline

1. Modeling

Assignment Problem

Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

Modeling Tricks

Objective function and/or constraints do not appear to be linear?

- Minimize the largest function value
- Maximize the smallest function value
- Constraints include variable division
- Constraints are either/or
- A variable must take one of several candidate values

Modeling Tricks I

Minimize the largest of a number of function values:

$$
\min \max \left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}
$$

- Introduce an auxiliary variable X :

$$
\begin{gathered}
\quad X \\
\text { min. } \begin{array}{c}
X\left(x_{1}\right)
\end{array} \leq X \\
f\left(x_{2}\right) \leq X
\end{gathered}
$$

Modeling Tricks II

Constraints include variable division:

- Constraint of the form

$$
\frac{a_{1} x+a_{2} y+a_{3} z}{d_{1} x+d_{2} y+d_{3} z} \leq b
$$

- Rearrange:

$$
a_{1} x+a_{2} y+a_{3} z \leq b\left(d_{1} x+d_{2} y+d_{3} z\right)
$$

which gives:

$$
\left(a_{1}-b d_{1}\right) x+\left(a_{2}-b d_{2}\right) y+\left(a_{3}-b d_{3}\right) z \leq 0
$$

III "Either/Or Constraints"

In conventional mathematical models, the solution must satisfy all constraints.
Suppose that your constraints are "either/or":

- $a_{1} x_{1}+a_{2} x_{2} \leq b_{1}$ or
- $d_{1} x_{1}+d_{2} x_{2} \leq b_{2}$

Introduce new variable $y \in\{0,1\}$ and a large number M :

- $a_{1} x_{1}+a_{2} x_{2} \leq b_{1}+M y$
- $d_{1} x_{1}+d_{2} x_{2} \leq b_{2}+M(1-y)$

III "Either/Or Constraints"

Binary integer programming allows to model alternative choices:

- Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP. introduce y auxiliary binary variable and M a big number:

$$
\begin{array}{ll}
A x \leq b+M y & \text { if } y=0 \text { then this is active } \\
A^{\prime} x \leq b^{\prime}+M(1-y) & \text { if } y=1 \text { then this is active }
\end{array}
$$

IV "Either/Or Constraints"

Generally:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 m} x_{m} \leq d_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 m} x_{m} \leq d_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{N 2} x_{2}+a_{N 3} x_{3}+\ldots+a_{N m} x_{m} \leq d_{N}
\end{gathered}
$$

Only K of the N constraints must be satisfied

IV "Either/Or Constraints"

Introduce binary variables $y_{1}, y_{2}, \ldots, y_{N}$ and a large number M

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 m} x_{m} \leq d_{1}+M y_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 m} x_{m} \leq d_{2}+M y_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{N 2} x_{2}+a_{N 3} x_{3}+\ldots+a_{N m} x_{m} \leq d_{N}+M y_{N} \\
y_{1}+y_{2}+\ldots y_{N}=N-K
\end{gathered}
$$

K of the y-variables is 0 , so K constraints must be satisfied

IV "Either/Or Constraints"

At least $h \leq k$ of $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1, \ldots, k$ must be satisfied introduce $y_{i}, i=1, \ldots, k$ auxiliary binary variables

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}+M y_{i} \\
\sum_{i} y_{i} \leq k-h
\end{gathered}
$$

V "Possible Constraints Values"

A constraint must take on one of N given values:

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{1} \text { or } \\
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{2} \text { or } \\
\vdots \\
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{N}
\end{gathered}
$$

Introduce binary variables $y_{1}, y_{2}, \ldots, y_{N}$:

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{m} x_{m}=d_{1} y_{1}+d_{2} y_{2}+\ldots d_{N} y_{N} \\
y_{1}+y_{2}+\ldots y_{N}=1
\end{gathered}
$$

Outline

Relaxations
Well Solved Problems

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

```
1. Modeling
Assignment Problem
Set Covering Graph Problems Modeling Tricks
```

2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

Uncapacited Facility Location (UFL)

Given:

- depot, $N=\{1, \ldots, n\}$
- clients $M=\{1, \ldots, m\}$
- f_{j} fixed cost to use depot j
- transport cost for all orders $c_{i j}$

Task: Which depots to open and which depots to serves which client

Variables: $y_{j}=\left\{\begin{array}{ll}1 & \text { if depot open } \\ 0 & \text { otherwise }\end{array}, x_{i j}\right.$ fraction of demand of i satisfied by j Objective:

$$
\min \sum_{i \in M} \sum_{j \in N} c_{i j} x_{i j}+\sum_{j \in N} f_{j} y_{j}
$$

Constraints:

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=1 & \forall i=1, \ldots, m \\
\sum_{i \in M} x_{i j} \leq m y_{j} & \forall j \in N
\end{array}
$$

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location
Alternative Formulations
3. Relaxations
4. Well Solved Problems

Good and Ideal Formulations

Definition (Formulation)
A polyhedron $P \subseteq \mathbb{R}^{n+p}$ is a formulation for a set $X \subseteq \mathbb{Z}^{n} \times \mathbb{R}^{p}$ if and only if $X=P \cap\left(\mathbb{Z}^{n} \times \mathbb{R}^{p}\right)$

That is, if it does not leave out any of the solutions of the feasible region X.
There are infinite formulations
Definition (Convex Hull)
Given a set $X \subseteq \mathbb{Z}^{n}$ the convex hull of X is defined as:

$$
\begin{aligned}
\operatorname{conv}(X)= & \left\{x: x=\sum_{i=1}^{t} \lambda_{i} x^{i}, \sum_{i=1}^{t} \lambda_{i}=1, \lambda_{i} \geq 0, \text { for } i=1, \ldots, t,\right. \\
& \text { for all finite subsets } \left.\left\{x^{1}, \ldots, x^{t}\right\} \text { of } X\right\}
\end{aligned}
$$

Proposition

$\operatorname{conv}(X)$ is a polyhedron

Proposition
Extreme points of $\operatorname{conv}(X)$ all lie in X
Hence:

$$
\max \left\{c^{\top} x: x \in X\right\} \equiv \max \left\{c^{\top} x: x \in \operatorname{conv}(x)\right\}
$$

However it might require exponential number of inequalities to describe conv (x)
What makes a formulation better than another?

$$
\begin{gathered}
X \subseteq \operatorname{conv}(X) \subseteq P_{1} \subset P_{2} \\
P_{1} \text { is better than } P_{2}
\end{gathered}
$$

Definition
Given a set $X \subseteq \mathbb{R}^{n}$ and two formulations P_{1} and P_{2} for X, P_{1} is a better formulation than P_{2} if $P_{1} \subset P_{2}$

Example
$P_{1}=$ UFL with $\sum_{i \in M} x_{i j} \leq m y_{j} \quad \forall j \in N$
$P_{2}=U F L$ with $x_{i j} \leq y_{j} \quad \forall i \in M, j \in N$

$$
P_{2} \subset P_{1}
$$

- $P_{2} \subseteq P_{1}$ because summing $x_{i j} \leq y_{j}$ over $i \in M$ we obtain $\sum_{i \in M} x_{i j} \leq m y_{j}$
- $P_{2} \subset P_{1}$ because there exists a point in P_{1} but not in P_{2} : $m=6=3 \cdot 2=k \cdot n$

$$
\begin{array}{ll}
x_{10}=1 x_{20}=1 x_{30}=1 & \sum_{i} x_{i 0} \leq 6 y_{0} \\
x_{41}=1 x_{51}=1 / 2 \\
\sum_{i} x_{i 1} \leq 6 y_{1} & y_{1}=1 / 2
\end{array}
$$

Outline

Relaxations

Well Solved Problems

```
1. Modeling
    Assignment Problem
    Set Covering
    Graph Problems
Modeling Tricks
2. Formulations
    Uncapacited Facility Location
    Alternative Formulations
```

3. Relaxations
4. Well Solved Problems

Optimality and Relaxation

$$
z=\max \left\{c(x): x \in X \subseteq \mathbb{Z}^{n}\right\}
$$

How can we prove that x^{*} is optimal? \bar{z} UB
\underline{z} LB
stop when $\bar{z}-\underline{z} \leq \epsilon$

- Primal bounds (here lower bounds): every feasible solution gives a LP may be easy or hard, heuristics
- Dual bounds (here upper bounds): Relaxations

Proposition

$$
\begin{aligned}
(R P) z^{R} & =\max \left\{f(x): x \in T \subseteq \mathbb{R}^{n}\right\} \text { is a relaxation of } \\
(I P) z & =\max \left\{c(x): x \in X \subseteq \mathbb{R}^{n}\right\} \text { if: }
\end{aligned}
$$

(i) $x \subseteq T$ or
(ii) $f(x) \geq c(x) \forall x \in X$

Relaxations

How to construct relaxations?

1. IP : $\max \left\{c^{T} x: x \in P \cap \mathbb{Z}^{n}\right\}, P=\left\{c \in \mathbb{R}^{n}: A x \leq b\right\}$
$L P: \max \left\{c^{\top} x: x \in P\right\}$
Better formulations give better bounds ($P_{1} \subseteq P_{2}$)

Proposition
(i) If a relaxation $R P$ is infeasible, the original problem $O P$ is infeasible.
(ii) Let x^{*} optimal solution for $R P$. If $x^{*} \in X$ and $f\left(x^{*}\right)=c\left(x^{*}\right)$ then x^{*} is optimal for IP.
2. Combinatorial relaxations to easy problems that can be solved rapidly Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
3. Lagrangian relaxation

$$
\begin{aligned}
& I P: \quad z=\max \left\{c^{T} x: A x \leq b, x \in X \subseteq \mathbb{Z}^{n}\right\} \\
& z(u)=\max \left\{c^{T} x+u(b-A x): x \in X\right\} \\
& z(u) \geq z \quad \forall u \geq 0
\end{aligned}
$$

4. Duality:

Definition

Two problems:

$$
z=\max \{c(x): x \in X\} \quad w=\min \{w(u): u \in U\}
$$

for a weak-dual pair if $c(x) \leq w(u)$ for all $x \in X$ and all $u \in U$. When $z=w$ they form a strong-dual pair

Proposition
$z=\max \left\{c^{\top} x: A x \leq b, x \in \mathbb{Z}_{+}^{n}\right\}$ and $w^{L P}=\min \left\{u b^{T}: u A \geq c, u \in \mathbb{R}_{+}^{m}\right\}$ (ie, linear relaxations) form a weak-dual pair.

Proposition

Let IP and D be weak-dual pair:
(i) If D us unbounded, then IP is infeasible
(ii) If $x^{*} \in X$ and $u^{*} \in U$ satisfy $c\left(x^{*}\right)=w\left(u^{*}\right)$ then x^{*} is optimal for IP and u^{*} is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation to have a bound, any feasible dual solution gives a bound.

Examples

Weak pairs:
Matching: $\quad z=\max \left\{1^{T} x: A x \leq 1, x \in \mathbb{Z}_{+}^{n}\right\}$
V. Covering: $\quad w=\min \left\{1^{\top} x: A x \geq 1, x \in \mathbb{Z}_{+}^{n}\right\}$

Proof: consider LP relaxations, then $z \leq z^{L P}=w^{L P} \leq w$. (strong when graphs are bipartite)

Weak pairs:
Packing:

$$
z=\max \left\{1^{T} x: A x \leq 1, x \in \mathbb{Z}_{+}^{n}\right\}
$$

S. Covering: $\quad w=\min \left\{1^{T} x: A x \geq 1, x \in \mathbb{Z}_{+}^{n}\right\}$

Outline

1. Modeling
 Assignment Problem
 Set Covering
 Graph Problems
 Modeling Tricks
 2. Formulations
 Uncapacited Facility Location Alternative Formulations

3. Relaxations
4. Well Solved Problems

Separation problem

$\max \left\{c^{\top} x: x \in X\right\} \equiv \max \left\{c^{\top} x: x \in \operatorname{conv}(x)\right\}$
$X \subseteq \mathbb{Z}^{n}, P$ a polyhedron $P \subseteq \mathbb{R}^{n}$ and $X=P \cap \mathbb{Z}^{n}$
Definition (Separation problem for a COP)
Given $x^{*} \in P$ is $x^{*} \in \operatorname{conv}(X)$? If not find an inequality $a x \leq b$ satisfied by all points in X but violated by the point x^{*}.
(Farkas lemma states the existence of such an inequality.)

Properties of Easy Problems

Four properties that often go together:
Definition
(i) Efficient optimization property: \exists a polynomial algorithm for $\max \left\{c x: x \in X \subseteq \mathbb{R}^{n}\right\}$
(ii) Strong duality property: \exists strong dual $\mathrm{D} \min \{w(u): u \in U\}$ that allows to quickly verify optimality
(iii) Efficient separation problem: \exists efficient algorithm for separation problem
(iv) Efficient convex hull property: a compact description of the convex hull is available

Example:
If explicit convex hull strong duality holds efficient separation property (just description of $\operatorname{conv}(X))$

1. Modeling

Assignment Problem
Set Covering
Graph Problems
Modeling Tricks
2. Formulations

Uncapacited Facility Location Alternative Formulations
3. Relaxations
4. Well Solved Problems

