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Traveling Salesman Problem Well Salved Problems
» Find the cheapest movement for a stacker crane that must pick up and
drop objects

> n cities, ¢ cost of travel

Variables:

1
Xij = 0

Objective:
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» cut set constraints
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» subtour elimination constraints
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Modeling Tricks

Modeling

Objective function and/or constraints do not appear to be linear?

>

>

>
>
>

Minimize the largest function value

Maximize the smallest function value

Constraints include variable division

Constraints are either/or

A variable must take one of several candidate values
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Modeling Tricks | Well Solved problems

Minimize the largest of a number of function values:

min = max{f(x1),...,f(xn)}

» Introduce an auxiliary variable X:
min X

s. t. f(x1)

f(x2)

<X
<X
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Well Solved Problems

Modeling Tricks Il

Constraints include variable division:

» Constraint of the form

a1 x + axy + azz
dix + de +d3z
> Rearrange:
aix + axy + azz < b(dhix + dby + dsz)
which gives:

(31 — bdl)X 4+ (32 — bdz)y + (83 — bd3)Z <0
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Il “Either/Or Constraints” WelScved Protlome

In conventional mathematical models, the solution must satisfy all
constraints.
Suppose that your constraints are “either/or™

> a1x1 + arxo < by or
> dix; + doxo < by
Introduce new variable y € {0,1} and a large number M:
> aixy + axxo < by + My
> dixy + doxo < by + M(1 —y)
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Il “Either/Or Constraints” el Selied protlens

Binary integer programming allows to model alternative choices:

» Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP.
introduce y auxiliary binary variable and M a big number:

Ax < b+ My if y = 0 then this is active
Ax < b +M(1-y) if y = 1 then this is active
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AV “Either/Or Constraints” Well Solved Problems

Generally:

ayixi + apxo + a13x3 + ... + armXm < di
a21X1 + @20Xo + ax3x3 + ... + amXm < da

amix1 + anaXx2 + an3xz + ...+ anmxm < dy

Only K of the N constraints must be satisfied
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AV “Either/or Constraints” Well Solved Problems

Introduce binary variables y1, y», ..., yy and a large number M

anxy + axe + a3xz + ... + aimxm < di + My,
a2 X1 + axpxo + axxz + ... + asmXm < do + Mys

amix1 + anaXxe + an3xz + ... + anmxXm < dy + Myn

vity+..yn=N-K

K of the y-variables is 0, so K constraints must be satisfied
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AV “Either/or Constraints" Well Solved Problems

n
At least h < k of > ajx; < bj, i =1,..., k must be satisfied
j=1
introduce y;, i = 1. ..., k auxiliary binary variables

n
> aix; < bi+ My,

=1

Z%’Sk—h
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V “Possible Constraints Values” Well Solved Problems

A constraint must take on one of N given values:

aix1 + axxo +azxz + ...+ amXm = dq or
aix1 + asxo + azxz + ...+ amxm = d» or

a1x1 + axxo + a3xz + ... + amxm = dn

Introduce binary variables y1. o, ..., yn:

a1xy + asxo +azxz + ...+ amxm = diys + doyo + ... dyyn

vit+ty2+...yn=1
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Uncapacited Facility Location (UFL) wellseled prcbiens

Given: Task: Which depots to open and which
> depot, N = {1,....n} depots to serves which client

> clients M = {1,...., m}

> f; fixed cost to use depot j

> transport cost for all orders c;;
1 if depot open

. x;j fraction of demand of / satisfied by j

Variables: y; = {0 otherwise

Objective:

minZZcijx;j—l—Zﬁ-yj

ieMjeN JEN

Constraints:

zx,-jzl Vi=1,...,m
j=1
fojgmyj vjeN

ieM
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Modeling
Formulations
Relaxations

Well Solved Problems

22



Modeling
Formulations
Relaxations

Good and Ideal Formulations Well Solved Problems

Definition (Formulation)

A polyhedron P C R™"P is a formulation for a set X C Z" x R” if and only if
X =PN(Z" x RP)

That is, if it does not leave out any of the solutions of the feasible region X.

There are infinite formulations

Definition (Convex Hull)
Given a set X C Z" the convex hull of X is defined as:

t t
conv(X):{x:x:Z)\;xi,Z/\;:1,)\;20,fori:l,...,t,
i=1 i=1

for all finite subsets {x*,...,x"} of X}
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Well Solved Problems

Proposition

conv(X) is a polyhedron

J

Proposition

Extreme points of conv(X) all lie in X

J

Hence:
max{c”x : x € X} = max{c"x : x € conv(x)}
However it might require exponential number of inequalities to describe
conv(x)
What makes a formulation better than another?
X Cconv(X)C Py C P
P; is better than P>

Definition

Given a set X C R"” and two formulations P; and P> for X, P; is a better
formulation than P, if P, C P»




Example

Py =UFL with 3., x; < my; VjeN
P> =UFL with x;; <y; VYie M,je N

P> C P

> P> C P; because summing x;; < y; over i € M we obtain
Diem X < my;

» P, C P; because there exists a point in P; but not in Ps:
m=6=3-2=k-n

Modeling
Formulations
Relaxations

Well Solved Problems

x10=1x0=1x39 =1 Z;Xi0§6y0 )/0:1/2
xa1 =1x51=1x61 =1 >oixin <6yr y1=1/2
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Optimality and Relaxation Well Selved Problems

z=max{c(x):x e X CZ"}

How can we prove that x* is optimal?

z
z UB
z LB ‘
stop when z — z < ¢ z

» Primal bounds (here lower bounds): every feasible solution gives a LP
may be easy or hard, heuristics

» Dual bounds (here upper bounds): Relaxations

Proposition
(RP) zR = max{f(x) : x € T CR"} is a relaxation of
(IP)z =max{c(x):xe X CR"} if:
(i) xC T or
(i) f(x)>c(x)¥xe X
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Relaxations Well Solved Problems

How to construct relaxations?

1 IP:max{c"x:x€ PNZ"},P={c€R": Ax < b}
LP :max{c"x:x € P}
Better formulations give better bounds (P; C P»)

Proposition
(i) If a relaxation RP is infeasible, the original problem OP is infeasible.

(ii) Let x* optimal solution for RP. If x* € X and f(x*) = c(x*) then x*
is optimal for IP.

2. Combinatorial relaxations to easy problems that can be solved rapidly
Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
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Well Solved Problems

3. Lagrangian relaxation

IP:  z=max{c"x:Ax < b,x€ X CZ"}
z(u) = max{c"x + u(b— Ax) : x € X}
z(u)>z NYu>0

4. Duality:

Definition
Two problems:
z =max{c(x) : x € X} w = min{w(u) : v € U}

for a weak-dual pair if c(x) < w(u) for all x € X and all v € U.
When z = w they form a strong-dual pair
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Proposition

z=max{c"x: Ax < b,x € Z7} and w'P = min{ub” : uUA > c,u € RT}
(ie, linear relaxations) form a weak-dual pair.

Proposition
Let IP and D be weak-dual pair:
(i) If D us unbounded, then IP is infeasible
(ii) Ifx* € X and u* € U satisfy c(x*) = w(u*) then x* is optimal for IP
and u* is optimal for D.

v

The advantage is that we do not need to solve an LP like in the LP relaxation
to have a bound, any feasible dual solution gives a bound.
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Exa m ples Well Solved Problem:

Weak pairs:
Matching: z=max{17x: Ax < 1,x € Z7}
V. Covering:  w =min{17x: Ax > 1,x € Z"}

Proof: consider LP relaxations, then z < zLP = wtP < w.
(strong when graphs are bipartite)

Weak pairs:
Packing: z=max{1l"x: Ax <1,x € Z1}
S. Covering: w =min{l"x: Ax >1,x€ Z7}

s
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Sepa ration problem Well Solved Problems

max{c’x: x € X} = max{c"x : x € conv(x)}
X C7Z", P a polyhedron P CR" and X = PN Z"
Definition (Separation problem for a COP)

Given x* € P is x* € conv(X)? If not find an inequality ax < b satisfied by
all points in X but violated by the point x*.

(Farkas lemma states the existence of such an inequality.)
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Properties Of Easy Problems Well Solved Problems

Four properties that often go together:
Definition
(i) Efficient optimization property: 3 a polynomial algorithm for
max{cx : x € X CR"}

(ii) Strong duality property: 3 strong dual D min{w(u) : v € U} that allows
to quickly verify optimality

(iii) Efficient separation problem: 3 efficient algorithm for separation problem

(iv) Efficient convex hull property: a compact description of the convex hull
is available

Example:
If explicit convex hull  strong duality holds

efficient separation property (just description of
conv(X))
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