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Well Solved Problems
Network Flows

Theoretical analysis to prove results about

> strength of certain inequalities that are facet defining
2 ways

» descriptions of convex hull of some discrete X C Z*
several ways, we see one next

Example

Example: Let X = {(x,y) e RT x B : "7 < my,x; <lfori=1,....m
and P={(x,y) eR. xR : x; < yfori=1,...,my <1}.

Polyhedron P describes conv(X)




Well Solved Problems

Totally Unimodular Matrices Network Flows

When the LP solution to this problem
IP:max{c"x: Ax < b,x € Z}
with all data integer will have integer solution?
Agxg + Anxy = b

ABXB - b, AB
m X m non singular matrix

Cramer’s rule for solving systems of equations:
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Well Solved Problems
Network Flows

Definition
> A square integer matrix B is called unimodular (UM) if det(B) = +1

> An integer matrix A is called totally unimodular (TUM) if every square,
nonsingular submatrix of A is UM

Proposition
> If Ais TUM then all vertices of Ri(A) = {x : Ax = b,x > 0} are integer
if b is integer
> If Ais TUM then all vertices of Ry(A) = {x : Ax < b,x > 0} are integer
if b is integer.

v

Proof: if Ais TUM then [Ai/] is TUM
Any square, nonsingular submatrix C of [Ail] can be written as

Bi0
- [8]

where B is square submatrix of A. Hence det(C) = det(B) = +1



Well Solved Problems
Network Flows

Proposition
The transpose matrix AT of a TUM matrix A is also TUM.

Theorem (Sufficient condition)

An integer matrix A with is TUM if
1. a; € {0,—1,+1} forall i,j
2. each column contains at most two non-zero coefficients (3" | |a;| < 2)
3. if the rows can be partitioned into two sets |, |» such that:

» if a column has 2 entries of same sign, their rows are in different sets
» if a column has 2 entries of different signs, their rows are in the

same set )
01000
1-10 L —-1-10 01111
1-1 10 0 1
{11] 011 0104 10111
101 0o 1o 10010

10000



Well Solved Problems

Proof: by induction
Basis: one matrix of one element is TUM

Induction: let C be of size k.
If C has column with all Os then it is singular.
If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

Vj:Za,-j:Za,-j

i€h i€l

but then linear combination of rows and det(C) =0

Note:

For TUM matrices 2., 3. and 4. hold. 1. also holds: Algorithm to test this in
polynomial time due to Seymour



Well Solved Problems

Other matrices with integrality property:
» TUM

» Balanced matrices

» Perfect matrices

> Integer vertices

Defined in terms of forbidden substructures that represent fractionating
possibilities.

Proposition

A is always TUM if it comes from

» node-edge incidence matrix of undirected bipartite graphs
(ie, no odd cycles) (h = U, L, =V,B=(U,V,E))

» node-arc incidence matrix of directed graphs (I, = ()

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching
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Well Solved Problems

Te rm i nOIOgy Network Flows

Network: e directed graph D = (V, A)
e arc, directed link, from tail to head
e lower bound /;; > 0, Vij € A, capacity uj > I, Vij € A
e cost ¢j, linear variation (if ij ¢ A then [; = u;; =0, ¢; = 0)
e balance vector b(i), b(i) < 0 supply node, b(i) > 0 demand
node, b(i/) = 0 transhipment node (assumption ), b(i) = 0)
N=(V,Al ub,c)

1
:b 1/-/4,3 >

3/-/3,]5/~/8,4@

A\

/ce/Xce/Uce-, Cce
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Well Solved Problems

Network Flows Moo Flows

Flow x: A—= R

balance vector of x: by(v) = > Xy — Y. Xu, Vv EV
vwEA uveA

>0 sink/target/tank
b.(v){ <0 source
=0 balanced

(generalizes the concept of path with b.(v) = {0.1, —1})

feasible [ < xij < wjj, be(i) = b(i)
cost cTx =374 cipxij (varies linearly with x)

If iji is a 2-cycle and all /;; = 0, then at least one of x;; and x;;
is zero.

12



Well Solved Problems

Exa m p I e Network Flows

1
: 1/3/4,3
b

5/6/8,4

Feasible flow of cost 109
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Well Solved Problems

Reductions/Transformations Neswork Flows

Lower bounds

Let N = (V,A I, u,b,c)

N = (V,A I u,b)
b'(j) = b(j) +
b'(i) = b(i) — Iy

u; = uj — I

14



Well Solved Problems
Network Flows

(s, t)-flow:
—k ifv=s

b(v)=<k ifv=t, |x] = bx(s)
0 otherwise

-3 (b) 5//% @ 3

1//2 0//2

-6 (© o @ s

3 feasible flow in N <= 3 (s, t)-flow in Ny with [x| = M <= max flow
in Ng is M

15



Network Flows

Undirected arcs

O---0

Vertex splitting

If there are bounds and costs of flow passing thorugh vertices where b(v) = 0
(used to ensure that a node is visited):

N=(V,AlLuc,I* u* c*)

N
N

d ds dy

From D to Dst as follows:

Vv eV ~ Vs, vt € V(Dst) and vivs € A(DsT)
Vxy € A(D) ~ xsy+ € A(DsT)

16



Well Solved Problems
Network Flows

Vxy € A and xsy; € Ast ~~ W (xsy:) = h(x,y) h€ {l,u,c}
Vv eV and vivs € Ast ~ h'(ve,vs) = h*(v) h* € {I*,u*,c*}

If b(v) =0, then b'(vs) = b'(v,) =0

If b(v) > 0, then b'(v;) = b(v) and b'(vs) =0
If b(v) <O, then b'(v;) =0 and b'(vs) = b(v)

17



Minimum Cost Network Flows

Well Solved Problems
Network Flows

Find cheapest flow through a network in order to satisfy demands at certain

nodes from available supplier nodes.
Variables:

Xij

Objective:

min g Cij Xij

jeA

Constraints: mass balance + flow bounds

ZXU— ij,-:b(i) VieV

JijeA JUieA

ng,-jgu,-j

min ¢’ x
Nx =b
0<x<u

N node arc incidence
matrix

(assumption: all values are integer, we can multiply if rational)

18
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Network Flows

Xij
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Well Solved Problems

S pecial Cases Network Flows

Shortest path problem path of minimum cost from s to t with costs ; 0
b(s) =—1,b(t)=1,b(i)=0
if to any other node? b(s) =n—1,b(i) = —1,uj=n—1

Max flow problem incur no cost but restricted by bounds
steady state flow from s to t
b(iy=0VieV, ci=0VijeA ts € A

Cts = —1, Uts = OO

Assignment problem min weighted bipartite matching,
‘V1| = ‘V2|,A - Vl X V2
Gjj
b(i)=-1Vie W b(i)=1Vie VWV, uj=1VvijeA

20



Well Solved Problems

S pecial Cases Network Flows

Transportation problem/Transhipment distribution of goods,
warehouses-costumers
Vil #|Val,  wj=o0VijeA

min Y cijx;
>_iXij = b V)
ij,-j <a Vi
X,'j Z 0

Min cost circulation problem b(i) =0Vie V

21



Network Flows

Minimum spanning tree connected acyclic graph that spans all nodes

Multi-commodity flow problem ship several commodities using the same
network, different origin destination pairs separate mass
balance constraints, share capacity constraints, min overall
flow

min >, ckxk
Nxk > pk Vk
>k X,-jf > ujj Vije A
K K
0 < xjj < uj

How does the structure of the matrix looks like? Is it still
TUM?

22



Well Solved Problems
Shortest Path - Dual LP Network Flows

Z = min E Cij Xij

jeA

Z Xijj — Z xji = —1 fori=s (7s)
JijeA JUi€eA

Do xi— Y %i=0 vie VA {s, t} (i)
JijeA JUi€eA

ZXU_Zinzl for i =t (7¢)
JijeA JUieA

Xij 2 0 VU EA
Dual problem:
LP
W = max Tt — Ts
m— 7 < G Vij€ A

Hence, the shortest path can be found by potential values 7; on nodes such
that 7 = 0,7, =z and m; —7; < ¢ for jj € A

23



Maximum (s, t)-Flow
Adding a backward arc from t to s:

Z = max Xis

Zx,-j— ZXJ',':O

JijeA JJi€A
Xij S uj;

X,‘jzo

Dual problem:

LP .
W™ = min ujj wij

jeA
Yi—Yyi+wi =0
ye—ys 21

z; >0

VieV

Vij€ A
Vij € A

Vij€ A

Vij € A

Well Solved Problems
Network Flows

—_~ o~~~
B W N
—_ — —
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Well Solved Problems
Network Flows

v

Without (3) all potentials would go to 0.

v

Keep w low because of objective function

v

Keep all potentials low ~~ (3) ys = 1,y; =0

v

Cut: on left =1 on right =0. Where is the transition?
> Var w identifies the cut ~» y; — yi + w;; > 0 ~» w;; =1

1 ifijeT
Wijj = .
0 otherwise

for those arcs that minimize the cut capacity ZijeA Ujjwjj

> Complementary slackness: z; =1 = x;; = uj

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

m)in{ Z uj:se X C V\{t}}

JEAEX jEX




Min Cost Flow - Dual LP

min E Cij Xij

jEA
E Xij — E Xji = b,‘
JijEA JUieA
Xij S ujj
Xij Z 0

Dual problem:

maxz biyi — Z Ujj zjj

icv iicE
—cj—yit+y <zjVij € E
z; > OVij €A

VieV

Vije A
Vije A

Well Solved Problems
Network Flows

(vi)
(zij)

(x3) (6)
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Network Flows

reduced costs Cjj = ¢jj + y; — yi, hence (2) —¢; < z;
ue = 0o then z, = 0 (from obj. func) and ¢; > 0 (optimality condition)

ue < oo then ze > 0 and z. > —j; then z. = max{0, —¢;;}, hence z is
determined by others and may be skipped

Complementary slackness
(at optimality: each primal variable x the corresponding dual slack must
be equal 0, ie, x.(Ce + z.) = 0; each dual variable x the corresponding
primal slack must be equal 0, ie, zo(x. — ue) = 0)

> Xxe > 0 then —C. = z. then max{0, .} then —Zc > 0 then (¢. < 0 then

xc > 0)

> ze > 0 then xe = ue then (—¢ > 0 then x. = ue)
Hence:

Ce < 0 then x. = ue # ¢

Ce > 0then x. =0
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Summary

1. Well Solved Problems

2. (Minimum Cost) Network Flows

Well Solved Problems
Network Flows
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