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Well Solved Problems
Network Flows

Theoretical analysis to prove results about
I strength of certain inequalities that are facet defining

2 ways
I descriptions of convex hull of some discrete X ⊆ Z∗

several ways, we see one next

Example

Example: Let X = {(x , y) ∈ Rm
+ × B1 :

∑m
i=1 ≤ my , xi ≤ 1 for i = 1, . . . ,m

and P = {(x , y) ∈ Rn
+ × R1 : xi ≤ y for i = 1, . . . ,m, y ≤ 1}.

Polyhedron P describes conv(X )
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Well Solved Problems
Network FlowsTotally Unimodular Matrices

When the LP solution to this problem

IP : max{cT x : Ax ≤ b, x ∈ Zn
+}

with all data integer will have integer solution? A I 0 b

c 0 1 0

 ABxB + ANxN = b
ABxB = b, AB
m ×m non singular matrix

Cramer’s rule for solving systems of equations:

[
a b
c d

] [
x
y

]
=

[
e
f

]
x =

∣∣∣∣e b
f d

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ y =

∣∣∣∣a e
c f

∣∣∣∣∣∣∣∣a b
c d

∣∣∣∣ x = B−1b =
Badjb
det(B)

5



Well Solved Problems
Network Flows

Definition
I A square integer matrix B is called unimodular (UM) if det(B) = ±1
I An integer matrix A is called totally unimodular (TUM) if every square,

nonsingular submatrix of A is UM

Proposition
I If A is TUM then all vertices of R1(A) = {x : Ax = b, x ≥ 0} are integer

if b is integer
I If A is TUM then all vertices of R2(A) = {x : Ax ≤ b, x ≥ 0} are integer

if b is integer.

Proof: if A is TUM then
[
A I
]
is TUM

Any square, nonsingular submatrix C of
[
A I
]
can be written as

C =

[
B 0
D Ik

]
where B is square submatrix of A. Hence det(C ) = det(B) = ±1
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Well Solved Problems
Network Flows

Proposition

The transpose matrix AT of a TUM matrix A is also TUM.

Theorem (Sufficient condition)

An integer matrix A with is TUM if
1. aij ∈ {0,−1,+1} for all i , j
2. each column contains at most two non-zero coefficients (

∑m
i=1 |aij | ≤ 2)

3. if the rows can be partitioned into two sets I1, I2 such that:
I if a column has 2 entries of same sign, their rows are in different sets
I if a column has 2 entries of different signs, their rows are in the

same set

[
1 −1
1 1

] 1 −1 0
0 1 1
1 0 1




1 −1 −1 0
−1 0 0 1
0 1 0 −1
0 0 1 0



0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0


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Well Solved Problems
Network Flows

Proof: by induction
Basis: one matrix of one element is TUM

Induction: let C be of size k .
If C has column with all 0s then it is singular.
If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

∀j :
∑
i∈I1

aij =
∑
i∈I2

aij

but then linear combination of rows and det(C ) = 0

Note:
For TUM matrices 2., 3. and 4. hold. 1. also holds: Algorithm to test this in
polynomial time due to Seymour
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Well Solved Problems
Network Flows

Other matrices with integrality property:

I TUM
I Balanced matrices
I Perfect matrices
I Integer vertices

Defined in terms of forbidden substructures that represent fractionating
possibilities.

Proposition

A is always TUM if it comes from
I node-edge incidence matrix of undirected bipartite graphs

(ie, no odd cycles) (I1 = U, I2 = V ,B = (U,V ,E ))
I node-arc incidence matrix of directed graphs (I2 = ∅)

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching
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Well Solved Problems
Network FlowsTerminology

Network: • directed graph D = (V ,A)
• arc, directed link, from tail to head
• lower bound lij > 0, ∀ij ∈ A, capacity uij ≥ lij , ∀ij ∈ A
• cost cij , linear variation (if ij 6∈ A then lij = uij = 0, cij = 0)
• balance vector b(i), b(i) < 0 supply node, b(i) > 0 demand
node, b(i) = 0 transhipment node (assumption

∑
i b(i) = 0)

N = (V ,A, l , u, b, c)

a

b(a)

c e

f

b d

lce/xce/uce , cce

a

−3

c

0

e

0

f

2

b

1

d

−3

1/ · /4, 1

0/ · /3, 1

2/ · /5, 6

3/ · /3, 1

4/ · /7, 8

5/ · /8, 4

0/ · /3, 2

1/ · /4, 3

2/ · /4, 1
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Well Solved Problems
Network FlowsNetwork Flows

Flow x : A→ R
balance vector of x : bx(v) =

∑
vw∈A

xvw −
∑

uv∈A
xuv , ∀v ∈ V

bx(v)


> 0 sink/target/tank
< 0 source
= 0 balanced

(generalizes the concept of path with bx(v) = {0, 1,−1})

feasible lij ≤ xij ≤ uij , bx(i) = b(i)
cost cT x =

∑
ij∈A cijxij (varies linearly with x)

If iji is a 2-cycle and all lij = 0, then at least one of xij and xji
is zero.
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Well Solved Problems
Network FlowsExample

a

−3

c

0

e

0

f

2

b

1

d

−3

0/0/3, 1

2/4/5, 6

1/1/4, 1

3/3/3, 1

4/5/7, 8

5/6/8, 4

0/3/3, 2

1/3/4, 3

2/2/4, 1

Feasible flow of cost 109
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Well Solved Problems
Network FlowsReductions/Transformations

Lower bounds

Let N = (V ,A, l , u, b, c) N ′ = (V ,A, l ′, u′, b′)
b′(j) = b(j) + lij
b′(i) = b(i)− lij
u′ij = uij − lij
l ′ij = 0

i

b(i)

j

b(j)lij > 0

i

b(i)− lij

j

b(j) + lijlij = 0

uij − lij

cT x cT x ′ +
∑
ij∈A

cij lij
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Well Solved Problems
Network Flows

(s, t)-flow:

bx(v) =


−k if v = s
k if v = t
0 otherwise

, |x | = bx(s)

e 8

d 3

c−6

b−3

0//21//2

6//6

5//5

s

b(s)
c e

t

b(t)

b d

1//2

0//b(d)0//− b(b)

b(s) =
∑

v :v(v)<0 b(v) = −M
b(t) =

∑
v :v(v)>0 b(v) = M

∃ feasible flow in N ⇐⇒ ∃ (s, t)-flow in Nst with |x | = M ⇐⇒ max flow
in Nst is M
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Well Solved Problems
Network Flows

Undirected arcs

i j

Vertex splitting
If there are bounds and costs of flow passing thorugh vertices where b(v) = 0
(used to ensure that a node is visited):
N = (V ,A, l , u, c , l∗, u∗, c∗)

From D to DST as follows:

∀v ∈ V  vs , vt ∈ V (DST ) and vtvs ∈ A(DST )
∀xy ∈ A(D) xsyt ∈ A(DST )

16



Well Solved Problems
Network Flows

∀xy ∈ A and xsyt ∈ AST  h′(xsyt) = h(x , y) h ∈ {l , u, c}
∀v ∈ V and vtvs ∈ AST  h′(vt , vs) = h∗(v) h∗ ∈ {l∗, u∗, c∗}

If b(v) = 0, then b′(vs) = b′(vt) = 0
If b(v) > 0, then b′(vt) = b(v) and b′(vs) = 0
If b(v) < 0, then b′(vt) = 0 and b′(vs) = b(v)
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Well Solved Problems
Network FlowsMinimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain
nodes from available supplier nodes.
Variables:

xij

Objective:

min
∑
ij∈A

cijxij

Constraints: mass balance + flow bounds∑
j :ij∈A

xij −
∑

j :ji∈A

xji = b(i) ∀i ∈ V

0 ≤ xij ≤ uij

min cT x
Nx = b
0 ≤ x ≤ u

N node arc incidence
matrix

(assumption: all values are integer, we can multiply if rational)
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Well Solved Problems
Network Flows

xe1 xe2 . . . xij . . . xem
ce1 ce2 . . . cij . . . cem

1 −1 . . . . . . . . . = b1

2 . . . . . . . . . . = b2
...

...
. . . =

...
i 1 . . . . −1 . . . . = bi
...

...
. . . =

...
j . . . . . 1 . . . . = bj
...

...
. . . =

...
n . . . . . . . . . . = bj

e1 −1 ≥ −u1

e2 −1 ≥ −u2
...

...
. . . ≥

...
(i , j) −1 ≥ −uij

...
...

. . . ≥
...

em −1 ≥ −um
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Well Solved Problems
Network FlowsSpecial cases

Shortest path problem path of minimum cost from s to t with costs Q 0
b(s) = −1, b(t) = 1, b(i) = 0
if to any other node? b(s) = n − 1, b(i) = −1, uij = n − 1

Max flow problem incur no cost but restricted by bounds
steady state flow from s to t
b(i) = 0 ∀i ∈ V , cij = 0 ∀ij ∈ A ts ∈ A
cts = −1, uts =∞

Assignment problem min weighted bipartite matching,
|V1| = |V2|,A ⊆ V1 × V2
cij
b(i) = −1 ∀i ∈ V1 b(i) = 1 ∀i ∈ V2 uij = 1 ∀ij ∈ A
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Well Solved Problems
Network FlowsSpecial cases

Transportation problem/Transhipment distribution of goods,
warehouses-costumers
|V1| 6= |V2|, uij =∞ ∀ij ∈ A

min
∑

cijxij∑
i xij ≥ bj ∀j∑
j xij ≤ ai ∀i
xij ≥ 0

Min cost circulation problem b(i) = 0 ∀i ∈ V
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Well Solved Problems
Network Flows

Minimum spanning tree connected acyclic graph that spans all nodes

Multi-commodity flow problem ship several commodities using the same
network, different origin destination pairs separate mass
balance constraints, share capacity constraints, min overall
flow

min
∑

k c
kxk

Nxk ≥ bk ∀k∑
k x

k
ij ≥ uij ∀ij ∈ A
0 ≤ xk

ij ≤ uk
ij

How does the structure of the matrix looks like? Is it still
TUM?
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Well Solved Problems
Network FlowsShortest Path - Dual LP

z = min
∑
ij∈A

cijxij∑
j :ij∈A

xij −
∑

j :ji∈A

xji = −1 for i = s (πs)

∑
j :ij∈A

xij −
∑

j :ji∈A

xji = 0 ∀i ∈ V \ {s, t} (πi )∑
j :ij∈A

xij −
∑

j :ji∈A

xji = 1 for i = t (πt)

xij ≥ 0 ∀ij ∈ A

Dual problem:

wLP = max πt − πs

πj − πi ≤ cij ∀ij ∈ A

Hence, the shortest path can be found by potential values πi on nodes such
that πs = 0, πt = z and πj − πi ≤ cij for ij ∈ A

23



Well Solved Problems
Network FlowsMaximum (s, t)-Flow

Adding a backward arc from t to s:

z = max xts∑
j :ij∈A

xij −
∑

j :ji∈A

xji = 0 ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij )

xij ≥ 0 ∀ij ∈ A

Dual problem:

wLP = min
∑
ij∈A

uijwij (1)

yi − yj + wij ≥ 0 ∀ij ∈ A (2)

yt − ys ≥ 1 (3)

zij ≥ 0 ∀ij ∈ A (4)
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Well Solved Problems
Network Flows

I Without (3) all potentials would go to 0.
I Keep w low because of objective function
I Keep all potentials low  (3) ys = 1, yt = 0
I Cut: on left =1 on right =0. Where is the transition?
I Var w identifies the cut  yj − yi + wij ≥ 0  wij = 1

wij =

{
1 if ij ∈ T
0 otherwise

for those arcs that minimize the cut capacity
∑

ij∈A uijwij

I Complementary slackness: zij = 1 =⇒ xij = uij

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

min
X
{

∑
ij∈A:i∈X ,j 6∈X

uij : s ∈ X ⊂ V \ {t}}
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Well Solved Problems
Network FlowsMin Cost Flow - Dual LP

min
∑
ij∈A

cijxij∑
j :ij∈A

xij −
∑

j :ji∈A

xji = bi ∀i ∈ V (yi )

xij ≤ uij ∀ij ∈ A (zij )

xij ≥ 0 ∀ij ∈ A

Dual problem:

max
∑
i∈V

biyi −
∑
ij∈E

uijzij (5)

−cij − yi + yj ≤ zij∀ij ∈ E (xij ) (6)

zij ≥ 0∀ij ∈ A (7)
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Well Solved Problems
Network Flows

I reduced costs c̄ij = cij + yj − yi , hence (2) −c̄ij ≤ zij

I ue =∞ then ze = 0 (from obj. func) and c̄ij ≥ 0 (optimality condition)

I ue <∞ then ze ≥ 0 and ze ≥ −c̄ij then ze = max{0,−c̄ij}, hence ze is
determined by others and may be skipped

I Complementary slackness
(at optimality: each primal variable × the corresponding dual slack must
be equal 0, ie, xe(c̄e + ze) = 0; each dual variable × the corresponding
primal slack must be equal 0, ie, ze(xe − ue) = 0)

I xe > 0 then −c̄e = ze then max{0, c̄e} then −c̄e > 0 then (c̄e < 0 then
xc > 0)

I ze > 0 then xe = ue then (−c̄ > 0 then xe = ue)

Hence:
c̄e < 0 then xe = ue 6=∞
c̄e > 0 then xe = 0
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