DM545 Linear and Integer Programming

Lecture 9 Well Solved Problems Network Flows

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Well Solved Problems Network Flows

1. Well Solved Problems

2. (Minimum Cost) Network Flows

Outline

1. Well Solved Problems

2. (Minimum Cost) Network Flows

Theoretical analysis to prove results about

- strength of certain inequalities that are facet defining 2 ways
- ▶ descriptions of convex hull of some discrete X ⊆ Z* several ways, we see one next

Example

Example: Let $X = \{(x, y) \in \mathbb{R}^m_+ \times \mathbb{B}^1 : \sum_{i=1}^m \le my, x_i \le 1 \text{ for } i = 1, \dots, m \text{ and } P = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^1 : x_i \le y \text{ for } i = 1, \dots, m, y \le 1\}.$ Polyhedron P describes conv(X)

Totally Unimodular Matrices

When the LP solution to this problem

 $IP: \max\{c^T x : Ax \le b, x \in \mathbb{Z}^n_+\}$

with all data integer will have integer solution?

 $\begin{aligned} A_B x_B + A_N x_N &= b \\ A_B x_B &= b, \ A_B \\ m \times m \ \text{non singular matrix} \end{aligned}$

Cramer's rule for solving systems of equations:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix} \qquad x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix} \qquad y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix} \qquad x = B^{-1}b = \frac{B^{adj}b}{\det(B)}$$

Definition

- A square integer matrix B is called unimodular (UM) if $det(B) = \pm 1$
- ► An integer matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix of A is UM

Proposition

- If A is TUM then all vertices of R₁(A) = {x : Ax = b, x ≥ 0} are integer if b is integer
- If A is TUM then all vertices of R₂(A) = {x : Ax ≤ b, x ≥ 0} are integer if b is integer.

Proof: if A is TUM then [A|I] is TUM Any square, nonsingular submatrix C of [A|I] can be written as

 $C = \begin{bmatrix} B & 0 \\ \overline{D} & \overline{I_k} \end{bmatrix}$

where B is square submatrix of A. Hence $det(C) = det(B) = \pm 1$

Proposition

The transpose matrix A^{T} of a TUM matrix A is also TUM.

Theorem (Sufficient condition)

An integer matrix A with is TUM if

- 1. $\textbf{a}_{ij} \in \{0,-1,+1\}$ for all i,j
- 2. each column contains at most two non-zero coefficients $(\sum_{i=1}^{m} |a_{ij}| \le 2)$

3. if the rows can be partitioned into two sets l_1 , l_2 such that:

- ▶ if a column has 2 entries of same sign, their rows are in different sets
- if a column has 2 entries of different signs, their rows are in the same set

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Proof: by induction

Basis: one matrix of one element is TUM

Induction: let C be of size k.

- If C has column with all 0s then it is singular.
- If a column with only one 1 then expand on that by induction
- If 2 non-zero in each column then

$$\forall j : \sum_{i \in I_1} a_{ij} = \sum_{i \in I_2} a_{ij}$$

but then linear combination of rows and det(C) = 0

Note:

For TUM matrices 2., 3. and 4. hold. 1. also holds: Algorithm to test this in polynomial time due to Seymour

Other matrices with integrality property:

- ► TUM
- Balanced matrices
- Perfect matrices
- Integer vertices

Defined in terms of forbidden substructures that represent fractionating possibilities.

Proposition

- A is always TUM if it comes from
 - ▶ node-edge incidence matrix of undirected bipartite graphs (ie, no odd cycles) (I₁ = U, I₂ = V, B = (U, V, E))
 - node-arc incidence matrix of directed graphs $(l_2 = \emptyset)$

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching

Outline

1. Well Solved Problems

2. (Minimum Cost) Network Flows

Terminology

Network: • directed graph D = (V, A)

- arc, directed link, from tail to head
- lower bound $I_{ij} > 0$, $\forall ij \in A$, capacity $u_{ij} \ge I_{ij}$, $\forall ij \in A$
- cost c_{ij} , linear variation (if $ij \notin A$ then $l_{ij} = u_{ij} = 0, c_{ij} = 0$)

• balance vector b(i), b(i) < 0 supply node, b(i) > 0 demand node, b(i) = 0 transhipment node (assumption $\sum_i b(i) = 0$) N = (V, A, l, u, b, c)

Network Flows

Flow $x : A \to \mathbb{R}$ balance vector of x: $b_x(v) = \sum_{vw \in A} x_{vw} - \sum_{uv \in A} x_{uv}$, $\forall v \in V$ $b_x(v) \begin{cases} > 0 \quad \text{sink/target/tank} \\ < 0 \quad \text{source} \\ = 0 \quad \text{balanced} \end{cases}$

(generalizes the concept of path with $b_x(v) = \{0, 1, -1\}$)

 $\begin{array}{ll} \text{feasible} & l_{ij} \leq x_{ij} \leq u_{ij}, \ b_x(i) = b(i) \\ \text{cost} & c^\top x = \sum_{ij \in A} c_{ij} x_{ij} \ \text{(varies linearly with } x) \end{array}$

If *iji* is a 2-cycle and all $l_{ij} = 0$, then at least one of x_{ij} and x_{ji} is zero.

Example

Feasible flow of cost 109

Reductions/Transformations

Lower bounds

Let N = (V, A, I, u, b, c)

$$N' = (V, A, l', u', b')$$

$$b'(j) = b(j) + l_{ij}$$

$$b'(i) = b(i) - l_{ij}$$

$$u'_{ij} = u_{ij} - l_{ij}$$

$$l'_{ij} = 0$$

b(*i*) b(j) $l_{ij} > 0$ $c^T x$

$$c^T x' + \sum_{ij \in A} c_{ij} I_{ij}$$

(s, t)-flow: $b_{x}(v) = \begin{cases} -k & \text{if } v = s \\ k & \text{if } v = t \\ 0 & \text{otherwise} \end{cases} |x| = b_{x}(s)$

$$b(s) = \sum_{v:v(v) < 0} b(v) = -M$$

$$b(t) = \sum_{v:v(v) > 0} b(v) = M$$

 \exists feasible flow in $N \iff \exists (s, t)$ -flow in N_{st} with $|x| = M \iff \max$ flow in N_{st} is M

Undirected arcs

i i i j

Vertex splitting

If there are bounds and costs of flow passing thorugh vertices where b(v) = 0 (used to ensure that a node is visited):

 $N = (V, A, I, u, c, I^*, u^*, c^*)$

From D to D_{ST} as follows:

$$\begin{array}{l} \forall v \in V \quad \rightsquigarrow v_s, v_t \in V(D_{ST}) \text{ and } v_t v_s \in A(D_{ST}) \\ \forall xy \in A(D) \rightsquigarrow x_s y_t \in A(D_{ST}) \end{array}$$

 $\forall xy \in A \text{ and } x_s y_t \in A_{ST} \rightsquigarrow h'(x_s y_t) = h(x, y) \ h \in \{l, u, c\} \\ \forall v \in V \text{ and } v_t v_s \in A_{ST} \rightsquigarrow h'(v_t, v_s) = h^*(v) \ h^* \in \{l^*, u^*, c^*\}$

If b(v) = 0, then $b'(v_s) = b'(v_t) = 0$ If b(v) > 0, then $b'(v_t) = b(v)$ and $b'(v_s) = 0$ If b(v) < 0, then $b'(v_t) = 0$ and $b'(v_s) = b(v)$

Minimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain nodes from available supplier nodes. **Variables:**

Xij

Objective:

$$\min\sum_{ij\in A}c_{ij}x_{ij}$$

 $\min c^{T} x$ Nx = b $0 \le x \le u$

Constraints: mass balance + flow bounds

$$\sum_{j:ij\in A} x_{ij} - \sum_{j:ji\in A} x_{ji} = b(i) \quad \forall i \in V$$
$$0 \le x_{ij} \le u_{ij}$$

N node arc incidence matrix

(assumption: all values are integer, we can multiply if rational)

Special cases

Shortest path problem path of minimum cost from s to t with costs ≤ 0 b(s) = -1, b(t) = 1, b(i) = 0if to any other node? $b(s) = n - 1, b(i) = -1, u_{ii} = n - 1$

Max flow problem incur no cost but restricted by bounds steady state flow from s to t $b(i) = 0 \ \forall i \in V, \quad c_{ij} = 0 \ \forall ij \in A \quad ts \in A$ $c_{ts} = -1, \quad u_{ts} = \infty$

Assignment problem min weighted bipartite matching,

$$\begin{split} |V_1| &= |V_2|, A \subseteq V_1 \times V_2 \\ c_{ij} \\ b(i) &= -1 \; \forall i \in V_1 \qquad b(i) = 1 \; \forall i \in V_2 \qquad u_{ij} = 1 \; \forall ij \in A \end{split}$$

Special cases

Transportation problem/Transhipment distribution of goods, warehouses-costumers $|V_{c}| \neq |V_{c}|$ $\mu_{r} = \infty \forall ii \in A$

 $|V_1| \neq |V_2|, \qquad u_{ij} = \infty \ \forall ij \in A$

$$\min \frac{\sum c_{ij} x_{ij}}{\sum_{i} x_{ij} \ge b_j} \forall j \\ \sum_{j} x_{ij} \le a_i \forall i \\ x_{ij} \ge 0$$

Min cost circulation problem $b(i) = 0 \ \forall i \in V$

Minimum spanning tree connected acyclic graph that spans all nodes

Multi-commodity flow problem ship several commodities using the same network, different origin destination pairs separate mass balance constraints, share capacity constraints, min overall flow

$$\min \sum_{k} c^{k} x^{k} \ Nx^{k} \ge b^{k} \quad orall k \ \sum_{k} x^{k}_{ij} \ge u_{ij} \quad orall ij \in A \ 0 \le x^{k}_{ij} \le u^{k}_{ij}$$

How does the structure of the matrix looks like? Is it still $\mathsf{TUM}?$

Well Solved Problems Network Flows

Shortest Path - Dual LP

$$\begin{aligned} z &= \min \sum_{ij \in A} c_{ij} x_{ij} \\ &\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = -1 & \text{for } i = s & (\pi_s) \\ &\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = 0 & \forall i \in V \setminus \{s, t\} & (\pi_i) \\ &\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = 1 & \text{for } i = t & (\pi_t) \\ & & x_{ij} \geq 0 & \forall ij \in A \end{aligned}$$

Dual problem:

 $w^{LP} = \max \pi_t - \pi_s$ $\pi_j - \pi_i \le c_{ij} \qquad \forall ij \in A$

Hence, the shortest path can be found by potential values π_i on nodes such that $\pi_s = 0, \pi_t = z$ and $\pi_j - \pi_i \leq c_{ij}$ for $ij \in A$

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$z = \max x_{ts}$ $\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = 0 \qquad \forall i \in V \qquad (\pi_i)$ $x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$ $x_{ij} \geq 0 \qquad \forall ij \in A$

Dual problem:

$$w^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$y_i - y_j + w_{ij} \ge 0 \qquad \forall ij \in A \qquad (2)$$

$$y_t - y_s \ge 1 \qquad (3)$$

$$z_{ij} \ge 0 \qquad \forall ij \in A \qquad (4)$$

- ▶ Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $y_s = 1, y_t = 0$
- ▶ Cut: on left =1 on right =0. Where is the transition?
- Var w identifies the cut $\rightsquigarrow y_j y_i + w_{ij} \ge 0 \rightsquigarrow w_{ij} = 1$

 $w_{ij} = egin{cases} 1 & \textit{if } ij \in T \ 0 & \textit{otherwise} \end{cases}$

for those arcs that minimize the cut capacity $\sum_{ij \in A} u_{ij} w_{ij}$

• Complementary slackness: $z_{ij} = 1 \implies x_{ij} = u_{ij}$

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

$$\min_{X} \{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \}$$

Min Cost Flow - Dual LP

$$\min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{j:ij \in A} x_{ij} - \sum_{j:ji \in A} x_{ji} = b_i \qquad \forall i \in V \qquad (y_i)$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (z_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A \qquad (z_{ij})$$

Dual problem:

$$\max \sum_{i \in V} b_i y_i - \sum_{ij \in E} u_{ij} z_{ij}$$
(5)
$$-c_{ij} - y_i + y_j \le z_{ij} \forall ij \in E$$
(x_{ij})
$$z_{ij} \ge 0 \forall ij \in A$$
(7)

- ▶ reduced costs $\bar{c}_{ij} = c_{ij} + y_j y_i$, hence (2) $-\bar{c}_{ij} \leq z_{ij}$
- $u_e = \infty$ then $z_e = 0$ (from obj. func) and $\bar{c}_{ij} \ge 0$ (optimality condition)
- ► u_e < ∞ then z_e ≥ 0 and z_e ≥ -c̄_{ij} then z_e = max{0, -c̄_{ij}}, hence z_e is determined by others and may be skipped
- ► Complementary slackness (at optimality: each primal variable × the corresponding dual slack must be equal 0, ie, x_e(\(\vec{c}_e + z_e) = 0\); each dual variable × the corresponding primal slack must be equal 0, ie, z_e(x_e - u_e) = 0)
 - ▶ $x_e > 0$ then $-\overline{c}_e = z_e$ then max $\{0, \overline{c}_e\}$ then $-\overline{c}_e > 0$ then $(\overline{c}_e < 0$ then $x_c > 0$)

• $z_e > 0$ then $x_e = u_e$ then $(-\overline{c} > 0$ then $x_e = u_e)$

Hence:

 $ar{c}_e < 0$ then $x_e = u_e
eq \infty$ $ar{c}_e > 0$ then $x_e = 0$

1. Well Solved Problems

2. (Minimum Cost) Network Flows