DM545
 Linear and Integer Programming
 Lecture 9
 Well Solved Problems Network Flows

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Well Solved Problems

2. (Minimum Cost) Network Flows

Outline

\author{

1. Well Solved Problems
}

2. (Minimum Cost) Network Flows

Theoretical analysis to prove results about

- strength of certain inequalities that are facet defining 2 ways
- descriptions of convex hull of some discrete $X \subseteq \mathbb{Z}^{*}$ several ways, we see one next

Example
Example: Let $X=\left\{(x, y) \in \mathbb{R}_{+}^{m} \times \mathbb{B}^{1}: \sum_{i=1}^{m} \leq m y, x_{i} \leq 1\right.$ for $i=1, \ldots, m$ and $P=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}^{1}: x_{i} \leq y\right.$ for $\left.i=1, \ldots, m, y \leq 1\right\}$. Polyhedron P describes conv (X)

Totally Unimodular Matrices

When the LP solution to this problem

$$
I P: \max \left\{c^{\top} x: A x \leq b, x \in \mathbb{Z}_{+}^{n}\right\}
$$

with all data integer will have integer solution?

$$
\left[\begin{array}{c:c:c:c}
& & & \\
A & I & 0 & b \\
\hdashline c & & & 0 \\
\hdashline c & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A_{B} x_{B}+A_{N} x_{N}=b \\
& A_{B} x_{B}=b, A_{B} \\
& m \times m \text { non singular matrix }
\end{aligned}
$$

Cramer's rule for solving systems of equations:

Definition

- A square integer matrix B is called unimodular (UM) if $\operatorname{det}(B)= \pm 1$
- An integer matrix A is called totally unimodular (TUM) if every square, nonsingular submatrix of A is UM

Proposition

- If A is TUM then all vertices of $R_{1}(A)=\{x: A x=b, x \geq 0\}$ are integer if b is integer
- If A is TUM then all vertices of $R_{2}(A)=\{x: A x \leq b, x \geq 0\}$ are integer if b is integer.

Proof: if A is TUM then [$A_{i}^{\prime} I$] is TUM
Any square, nonsingular submatrix C of $\left[A_{i}^{\prime} I\right]$ can be written as

$$
C=\left[\begin{array}{c}
B i 0 \\
\hdashline \bar{D}_{1} \bar{I}_{k}
\end{array}\right]
$$

where B is square submatrix of A. Hence $\operatorname{det}(C)=\operatorname{det}(B)= \pm 1$

Proposition

The transpose matrix A^{T} of a TUM matrix A is also TUM.
Theorem (Sufficient condition)
An integer matrix A with is TUM if

1. $a_{i j} \in\{0,-1,+1\}$ for all i, j
2. each column contains at most two non-zero coefficients ($\sum_{i=1}^{m}\left|a_{i j}\right| \leq 2$)
3. if the rows can be partitioned into two sets I_{1}, I_{2} such that:

- if a column has 2 entries of same sign, their rows are in different sets
- if a column has 2 entries of different signs, their rows are in the same set

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Proof: by induction
Basis: one matrix of one element is TUM
Induction: let C be of size k.
If C has column with all 0 s then it is singular.
If a column with only one 1 then expand on that by induction
If 2 non-zero in each column then

$$
\forall j: \sum_{i \in I_{1}} a_{i j}=\sum_{i \in I_{2}} a_{i j}
$$

but then linear combination of rows and $\operatorname{det}(C)=0$

Note:
For TUM matrices 2., 3. and 4. hold. 1. also holds: Algorithm to test this in polynomial time due to Seymour

Other matrices with integrality property:

- TUM
- Balanced matrices
- Perfect matrices
- Integer vertices

Defined in terms of forbidden substructures that represent fractionating possibilities.

Proposition
A is always TUM if it comes from

- node-edge incidence matrix of undirected bipartite graphs (ie, no odd cycles) $\left(l_{1}=U, I_{2}=V, B=(U, V, E)\right)$
- node-arc incidence matrix of directed graphs $\left(I_{2}=\emptyset\right)$

Eg: Shortest path, max flow, min cost flow, bipartite weighted matching

Outline

1. Well Solved Problems

2. (Minimum Cost) Network Flows

Terminology

Network: - directed graph $D=(V, A)$

- arc, directed link, from tail to head
- lower bound $I_{i j}>0, \forall i j \in A$, capacity $u_{i j} \geq I_{i j}, \forall i j \in A$
- $\operatorname{cost} c_{i j}$, linear variation (if ij $\notin A$ then $l_{i j}=u_{i j}=0, c_{i j}=0$)
- balance vector $b(i), b(i)<0$ supply node, $b(i)>0$ demand node, $b(i)=0$ transhipment node (assumption $\sum_{i} b(i)=0$) $N=(V, A, l, u, b, c)$

Network Flows

Flow $x: A \rightarrow \mathbb{R}$
balance vector of $x: b_{x}(v)=\sum_{v w \in A} x_{v w}-\sum_{u v \in A} x_{u v}, \forall v \in V$

$$
b_{x}(v) \begin{cases}>0 & \text { sink/target/tank } \\ <0 & \text { source } \\ =0 & \text { balanced }\end{cases}
$$

(generalizes the concept of path with $b_{x}(v)=\{0,1,-1\}$)
feasible $\quad l_{i j} \leq x_{i j} \leq u_{i j}, b_{x}(i)=b(i)$
cost $\quad c^{\top} x=\sum_{i j \in A} c_{i j} x_{i j}$ (varies linearly with x)
If $i j i$ is a 2 -cycle and all $I_{i j}=0$, then at least one of $x_{i j}$ and $x_{j i}$ is zero.

Example

Feasible flow of cost 109

Reductions/Transformations

Lower bounds

$$
\text { Let } N=(V, A, I, u, b, c)
$$

$$
\begin{aligned}
N^{\prime} & =\left(V, A, I^{\prime}, u^{\prime}, b^{\prime}\right) \\
b^{\prime}(j) & =b(j)+l_{i j} \\
b^{\prime}(i) & =b(i)-I_{i j} \\
u_{i j}^{\prime} & =u_{i j}-l_{i j} \\
I_{i j}^{\prime} & =0
\end{aligned}
$$

$$
\xrightarrow[(i)-l_{i j} \quad l_{i j}=0 \quad b(j)+l_{i j}]{u_{i j}-l_{i j}}
$$

$$
c^{T} x
$$

$$
c^{T} x^{\prime}+\sum_{i j \in A} c_{i j} l_{i j}
$$

(s, t)-flow:
$b_{x}(v)=\left\{\begin{array}{ll}-k & \text { if } v=s \\ k & \text { if } v=t, \\ 0 & \text { otherwise }\end{array}, \quad|x|=b_{x}(s)\right.$

$$
\begin{aligned}
& b(s)=\sum_{v: v(v)<0} b(v)=-M \\
& b(t)=\sum_{v: v(v)>0} b(v)=M
\end{aligned}
$$

\exists feasible flow in $N \Longleftrightarrow \exists(s, t)$-flow in $N_{s t}$ with $|x|=M \Longleftrightarrow$ max flow in $N_{s t}$ is M

Undirected arcs

Vertex splitting

If there are bounds and costs of flow passing thorugh vertices where $b(v)=0$ (used to ensure that a node is visited):

$$
N=\left(V, A, I, u, c, I^{*}, u^{*}, c^{*}\right)
$$

From D to $D_{S T}$ as follows:

$$
\begin{aligned}
& \forall v \in V \quad \rightsquigarrow v_{s}, v_{t} \in V\left(D_{S T}\right) \text { and } v_{t} v_{s} \in A\left(D_{S T}\right) \\
& \forall x y \in A(D) \rightsquigarrow x_{s} y_{t} \in A\left(D_{S T}\right)
\end{aligned}
$$

$\forall x y \in A$ and $x_{s} y_{t} \in A_{S T} \rightsquigarrow h^{\prime}\left(x_{s} y_{t}\right)=h(x, y) h \in\{I, u, c\}$ $\forall v \in V$ and $v_{t} v_{s} \in A_{S T} \rightsquigarrow h^{\prime}\left(v_{t}, v_{s}\right)=h^{*}(v) h^{*} \in\left\{I^{*}, u^{*}, c^{*}\right\}$

If $b(v)=0$, then $b^{\prime}\left(v_{s}\right)=b^{\prime}\left(v_{t}\right)=0$
If $b(v)>0$, then $b^{\prime}\left(v_{t}\right)=b(v)$ and $b^{\prime}\left(v_{s}\right)=0$
If $b(v)<0$, then $b^{\prime}\left(v_{t}\right)=0$ and $b^{\prime}\left(v_{s}\right)=b(v)$

Minimum Cost Network Flows

Find cheapest flow through a network in order to satisfy demands at certain nodes from available supplier nodes.
Variables:

$$
x_{i j}
$$

Objective:

$$
\min \sum_{i j \in A} c_{i j} x_{i j}
$$

$$
\begin{aligned}
& \min c^{T} x \\
& \quad N x=b \\
& \quad 0 \leq x \leq u
\end{aligned}
$$

Constraints: mass balance + flow bounds

$$
\begin{aligned}
& \sum_{j: i j \in A} x_{i j}-\sum_{j: j i \in A} x_{j i}=b(i) \quad \forall i \in V \\
& 0 \leq x_{i j} \leq u_{i j}
\end{aligned}
$$

N node arc incidence matrix
(assumption: all values are integer, we can multiply if rational)

i	$X_{e_{1}}$ $C_{e_{1}}$	$X_{e_{2}}$ $C_{e_{2}}$	$x_{i j}$ $c_{i j}$	$X_{e_{m}}$ $C_{e_{m}}$		
1-	-1	.	-	--	=	\bar{b}_{1}
21	$=$	b_{2}
: 1	:	-				-
$\therefore 1$:	\because.			$=$:
i	1	.	-1	.	$=$	b_{i}
: 1	:					-
: 1	:	.			$=$:
j	.	.	1	.	$=$	b_{j}
- 1	.					.
:	:	.			$=$:
n I					=	b_{j}
$e_{1}-$ -	-1				\geq	$-u_{1}$
e_{2}		-1			\geq	$-u_{2}$
. 1						.
: 1	.	-			\geq	:
(i, j)			-1		\geq	$-u_{i j}$
. 1	.	.				
: 1	:	-.			\geq	:
e_{m}				-1	\geq	$-u_{m}$

Special cases

Shortest path problem path of minimum cost from s to t with costs $\lesseqgtr 0$ $b(s)=-1, b(t)=1, b(i)=0$
if to any other node? $b(s)=n-1, b(i)=-1, u_{i j}=n-1$
Max flow problem incur no cost but restricted by bounds
steady state flow from s to t

$$
\begin{aligned}
& b(i)=0 \forall i \in V, \quad c_{i j}=0 \forall i j \in A \quad t s \in A \\
& c_{t s}=-1, \quad u_{t s}=\infty
\end{aligned}
$$

Assignment problem min weighted bipartite matching,

$$
\begin{aligned}
& \left|V_{1}\right|=\left|V_{2}\right|, A \subseteq V_{1} \times V_{2} \\
& c_{i j} \\
& b(i)=-1 \forall i \in V_{1} \quad b(i)=1 \forall i \in V_{2} \quad u_{i j}=1 \forall i j \in A
\end{aligned}
$$

Special cases

Transportation problem/Transhipment distribution of goods, warehouses-costumers

$$
\begin{aligned}
&\left|V_{1}\right| \neq\left|V_{2}\right|, \quad u_{i j}=\infty \forall i j \in A \\
& \min \sum_{c} c_{i j} x_{i j} \\
& \sum_{i} x_{i j} \geq b_{j} \forall j \\
& \sum_{j} x_{i j} \leq a_{i} \forall i \\
& x_{i j} \geq 0
\end{aligned}
$$

Min cost circulation problem $b(i)=0 \forall i \in V$

Minimum spanning tree connected acyclic graph that spans all nodes
Multi-commodity flow problem ship several commodities using the same network, different origin destination pairs separate mass balance constraints, share capacity constraints, min overall flow

$$
\begin{aligned}
\min \sum_{k} c^{k} x^{k} & \\
N x^{k} & \geq b^{k} \quad \forall k \\
\sum_{k} x_{i j}^{k} & \geq u_{i j} \quad \forall i j \in A \\
0 & \leq x_{i j}^{k} \leq u_{i j}^{k}
\end{aligned}
$$

How does the structure of the matrix looks like? Is it still TUM?

Shortest Path - Dual LP

$$
\begin{array}{rlrl}
z=\min \sum_{i j \in A} c_{i j} x_{i j} & & \\
\sum_{j: i j \in A} x_{i j}-\sum_{j: j i \in A} x_{j i} & =-1 & & \\
\sum_{j: i j \in A} x_{i j}-\sum_{j: j i \in A} x_{j i} & =0 & & \\
\sum_{j: i j \in A} x_{i j}-\sum_{j: j i \in A} x_{j i} & =1 & \forall i \in s \tag{i}\\
x_{i j} & \geq 0 & & \backslash s, t\} \\
\text { for } i & =t \\
& & \forall i j \in A
\end{array}
$$

Dual problem:

$$
\begin{gathered}
w^{L P}=\max \pi_{t}-\pi_{s} \\
\pi_{j}-\pi_{i} \leq c_{i j}
\end{gathered}
$$

$$
\forall i j \in A
$$

Hence, the shortest path can be found by potential values π_{i} on nodes such that $\pi_{s}=0, \pi_{t}=z$ and $\pi_{j}-\pi_{i} \leq c_{i j}$ for $i j \in A$

Maximum (s, t)-Flow

Adding a backward arc from t to s :

$$
\begin{array}{rlrl}
z=\max x_{t s} & \\
\sum_{j: i j \in A} x_{i j}-\sum_{j: j i \in A} x_{j i} & =0 & & \forall i \in V \\
x_{i j} & \leq u_{i j} & & \forall i j \in A \\
x_{i j} & \geq 0 & & \forall i j \in A
\end{array}
$$

Dual problem:

$$
\begin{align*}
w^{L P}=\min & \sum_{i j \in A} u_{i j} w_{i j} \tag{1}\\
y_{i}-y_{j}+w_{i j} & \geq 0 \tag{2}\\
y_{t}-y_{s} & \geq 1 \tag{3}\\
z_{i j} & \geq 0 \tag{4}
\end{align*}
$$

$\forall i j \in A$
$\forall i j \in A$

- Without (3) all potentials would go to 0 .
- Keep w low because of objective function
- Keep all potentials low $\rightsquigarrow(3) y_{s}=1, y_{t}=0$
- Cut: on left $=1$ on right $=0$. Where is the transition?
- Var w identifies the cut $\rightsquigarrow y_{j}-y_{i}+w_{i j} \geq 0 \rightsquigarrow w_{i j}=1$

$$
w_{i j}= \begin{cases}1 & \text { if } i j \in T \\ 0 & \text { otherwise }\end{cases}
$$

for those arcs that minimize the cut capacity $\sum_{i j \in A} u_{i j} w_{i j}$

- Complementary slackness: $z_{i j}=1 \Longrightarrow x_{i j}=u_{i j}$

Theorem
A strong dual to the max (st)-flow is the minimum (st)-cut problem:

$$
\min _{X}\left\{\sum_{i j \in A: i \in X, j \notin X} u_{i j}: s \in X \subset V \backslash\{t\}\right\}
$$

Min Cost Flow - Dual LP

$$
\begin{array}{rlr}
\min \sum_{i j \in A} c_{i j} x_{i j} & \\
\sum_{j: i j \in A} x_{i j}-\sum_{j: j i \in A} x_{j i}=b_{i} & \forall i \in V \\
x_{i j} \leq u_{i j} & & \forall i j \in A \\
x_{i j} & \geq 0 &
\end{array}
$$

Dual problem:

$$
\begin{array}{r}
\max \sum_{i \in V} b_{i} y_{i}-\sum_{i j \in E} u_{i j} z_{i j} \\
-c_{i j}-y_{i}+y_{j} \leq z_{i j} \forall i j \in E \\
z_{i j} \geq 0 \forall i j \in A \tag{7}
\end{array}
$$

$$
\left(x_{i j}\right)
$$

- reduced costs $\bar{c}_{i j}=c_{i j}+y_{j}-y_{i}$, hence (2) $-\bar{c}_{i j} \leq z_{i j}$
- $u_{e}=\infty$ then $z_{e}=0$ (from obj. func) and $\bar{c}_{i j} \geq 0$ (optimality condition)
- $u_{e}<\infty$ then $z_{e} \geq 0$ and $z_{e} \geq-\bar{c}_{i j}$ then $z_{e}=\max \left\{0,-\bar{c}_{i j}\right\}$, hence z_{e} is determined by others and may be skipped
- Complementary slackness (at optimality: each primal variable \times the corresponding dual slack must be equal 0 , ie, $x_{e}\left(\bar{c}_{e}+z_{e}\right)=0$; each dual variable \times the corresponding primal slack must be equal 0 , ie, $z_{e}\left(x_{e}-u_{e}\right)=0$)
- $x_{e}>0$ then $-\bar{c}_{e}=z_{e}$ then max $\left\{0, \bar{c}_{e}\right\}$ then $-\bar{c}_{e}>0$ then $\left(\bar{c}_{e}<0\right.$ then $x_{c}>0$)
- $z_{e}>0$ then $x_{e}=u_{e}$ then $\left(-\bar{c}>0\right.$ then $\left.x_{e}=u_{e}\right)$

Hence:

$$
\begin{aligned}
& \bar{c}_{e}<0 \text { then } x_{e}=u_{e} \neq \infty \\
& \bar{c}_{e}>0 \text { then } x_{e}=0
\end{aligned}
$$

Summary

\author{

1. Well Solved Problems
}
2. (Minimum Cost) Network Flows
