
DM810

Computer Game Programming II: AI

Lecture 13
Tactical and Strategic AI

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsResume

1. Movement
2. Pathfinding
3. Decision making
4. Tactical and strategic AI
5. Board game AI

2

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsOutline

1. Board game AI

2. MiniMaxing

3. Alpha-beta pruning

4. Transposition Tables and Memory

5. Memory-Enhanced Test Algorithms

3

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsOutline

1. Board game AI

2. MiniMaxing

3. Alpha-beta pruning

4. Transposition Tables and Memory

5. Memory-Enhanced Test Algorithms

4

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsBoard game AI

different techniques from the ones seen so far
tree-search algorithms defined on a special tree representation of the
game.

limited applicability for real-time games

a strategic layer only occasionally used. Eg. making long-term decisions
in war games.

but needed for AI in board games.

5

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsGame Theory

Game theory is a mathematical discipline concerned with the study of
abstracted, idealized games

classification of games according to:
number of players
kinds of goal
information each player has about the game.

6

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test Algorithms

Number of players
most of the board games have two players.

ply one player’s turn (aka half-move with 2 players)

move One round of all the players’ turns (aka turn)

Goal
zero-sum game: your win is the opponent’s loss (1;−1)
trying to win ≡ trying to make your opponent loose.

non-zero-sum game: you could all win or all lose
focus on your own winning, rather than your opponent losing

with more than two players and zero-sum games, best strategy may not
be making every opponent loose.

Information
perfect information fully observable environment
complete knowledge of every move your opponent could possibly make

imperfect information partially observable environment
eg, random element that makes unforeseeable which move you and the
opponent will take. 7

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsTypes of Games

deterministic chance

perfect information chess, checkers, kalaha
go, othello

backgammon,
monopoly

imperfect information battleships,
blind tictactoe

bridge, poker, scrabble

8

http://kalaha.krus.dk/
http://www.mathsisfun.com/games/reversi.html
http://kalaha.krus.dk/
http://www.mathsisfun.com/games/reversi.html

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsGame Tree

For turn-based games: each node in the tree represents a board position, and
each branch represents one possible move.

terminal positions: no possible move, represent end of the game. Score given
to players

branching factor: number of branches at each branching point in the tree

tree depth: finite or infinite

transposition same board position from different sequences of moves cycles
9

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsExample

7-Split Nim: split one pile of coins into two non-equal piles. The last player
to be able to make a move wins

10

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsMeasures of Game Complexity

state-space complexity: number of legal game positions reachable from
the initial position of the game.

an upper bound can often be computed by including illegal positions
Eg, TicTacToe:
39 = 19.683
5.478 after removal of illegal
765 essentially different positions after eliminating symmetries

game tree size: total number of possible games that can be played:
number of leaf nodes in the game tree rooted at the game’s initial
position.

Eg: TicTacToe:
9! = 362.880 possible games
255.168 possible games halting when one side wins
26.830 after removal of rotations and reflections

11

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test Algorithms

12

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test Algorithms

First three levels of the tic-tac-toe state space reduced by symmetry: 12× 7!

13

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsOutline

1. Board game AI

2. MiniMaxing

3. Alpha-beta pruning

4. Transposition Tables and Memory

5. Memory-Enhanced Test Algorithms

14

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsMiniMaxing

static evaluation function: heuristic to score a state of the game for one player

it reflects how likely a player is to win the game from that board position

knowledge of how to play the game (ie, strategic positions) enters here.
Eg: Reversi, higher score for fewer counters in the middle of the game

the domain is the natural numbers (−100; +100)

Eg. in Chess: ±1000 for a win or loss, 10 for the value of a pawn

there may be several scoring functions which are then combined in a
single value (eg, by weighted sum, weigths can depend on the state of
the game)

since heuristic is not perfect, one can enhance them by lookahead to
decide which move to take

15

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsMiniMaxing

Starting from the bottom of the tree, scores are bubbled up according to the
minimax rule:

on our moves, we are trying to maximize our score

on opponent moves, the opponent is trying to minimize our score

(Perfect play for deterministic, perfect-information games)

Implementation
recursion + at maximum search depth call the static evaluation function

Class representing one position in the game:
class Board:

def getMoves()
def makeMove(move)
def evaluate(player)
def currentPlayer()
def isGameOver()

16

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsExample

2-ply game:

MAX

3 12 8 642 14 5 2

MIN

3

A
1

A
3

A
2

A
13A

12
A

11
A

21 A
23

A
22

A
33A

32
A

31

3 2 2

What if three players?

17

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsMinimax algorithm

Recursive Depth First Search:

18

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsProperties of minimax

Complete: Yes, if tree is finite (chess has specific rules for this)
Time complexity: O(bm)
Space complexity: O(bm) (depth-first exploration)

But do we need to explore every path?

19

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsNegamaxing

For two player and zero sum games:
If one player scores a board at −1, then the opponent should score it at +1

 simplify the minimax algorithm.

adopt the perspective of the
player that has to move

at each stage of bubbling up, all
the scores from the previous level
have their signs changed

largest of these values is chosen
at each time

Simpler implementation but same complexity
20

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsOutline

1. Board game AI

2. MiniMaxing

3. Alpha-beta pruning

4. Transposition Tables and Memory

5. Memory-Enhanced Test Algorithms

21

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsAlpha-beta pruning

ignore sections of the tree that cannot possibly contain the best move
Alpha Pruning (our perspective)
lower limit on what we can hope to score

Beta Pruning (opponent perspective)
upper limit on what we can hope to score
disregard scores greater than the beta value

If it is the opponent’s turn to play, we minimize the scores, so only the
minimum score can change and we only need to check against alpha.

If it is our turn to play, we are maximizing the scores, and so only the
beta check is required. 22

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test Algorithmsα–β pruning example

MAX

3 12 8

MIN

3

3

2

2

X X
14

14

5

5

2

2

3

Minimax(root) = max {3,min{2, x , y},min{...}}

23

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsExample

24

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsThe α–β algorithm

α is the best value to MAX up to now for everything that comes above in the game
tree. Similar for β and MIN.

25

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsProperties of α–β

(α, β) search window: we will never choose to make moves that score
less than alpha, and our opponent will never let us make moves scoring
more than beta.

Pruning does not affect final result

Good move ordering improves effectiveness of pruning (shrinks window)
consider first most promising moves:

use heuristics

use results of previous minimax searches (from iterative deepening or
previous turns)

With “perfect ordering,” time complexity = O(bm/2) ⇒ doubles solvable
depth

if b is relatively small, random orders leads to O(b3m/4)

26

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsAlpha-beta Negamax

It swaps and inverts the alpha and beta values and checks and prunes against
just the beta value

27

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsNegascout

aspiration search restrict the window range artifically maybe using results
from previous search (eg. (5 - window size, 5 + window size))

extreme cases window size = 0
fail soft: the search returns a more sensible window to guide the guess

full examination of the first move from each board position (wide search
window)

successive moves are examined using a scout pass with a window based
on the score from the first move

If the pass fails, then it is repeated with a full-width window

In general, negascout dominates αβ negamax; it always examines the
same or fewer boards.

28

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsAlpha-beta Negascout

29

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsOutline

1. Board game AI

2. MiniMaxing

3. Alpha-beta pruning

4. Transposition Tables and Memory

5. Memory-Enhanced Test Algorithms

30

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsTransposition Tables and Memory

algorithms can make use of a transposition table to avoid doing extra
work searching the same board position several times

working memory of board positions that have been considered

use specialized hash functions
desiderata: spread the likely positions as widely as possible through the
range of the hash value.
hash values that change widely when from move to move the board
changes very little

31

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsZobrist key

Zobrist key is a set of fixed-length random bit
patterns stored for each possible state of
each possible location on the board.
Example: Chess has 64 squares, and each
square can be empty or have 1 of 6 different
pieces on it, each of two possible colors.
Zobrist key needs to be
64× 2× (6+ 1) = 832 different bit-strings.

the Zobrist keys need to be initialized with
random bit-strings of the appropriate size.

for each non-empty square, the Zobrist key is
looked up and XORed with a running hash
total.

they can be incrementally updated

Eg: for a tic-tac-toe game
zobristKey[9*2]
def initZobristKey():
for i in 0..9*2:
zobristKey[i] = rand32()

def hash(ticTacToeBoard):
result = 0
for i in 0..9:
piece = board.

getPieceAtLocation(i)
if piece != UNOCCUPIED:
result = result xor

zobristKey[i*2+
piece]

return result

32

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsWhat to store?

hash table stores the value associated with a board position

the best move from each board position

depth used to calculate that value

accurate value, or we may be storing “fail-soft” values that result from a
branch being pruned.

accurate value or fail-low value (alpha pruned), or fail-high value (beta
pruned)

33

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test Algorithms

Implementation:
hash table is an array of lists buckets[hashValue % MAX_BUCKETS]

There is no point in storing positions in the hash table that are unlikely to
ever be visited again. hash array implementation, where each bucket has a
size of one.

how and when to replace a stored value when a clash occurs?
always overwrite
replace whenever the clashing node is for a later move
keep multiple transposition tables with different replacement strategies

Space: linear in branching factor and maximum search depth used

34

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsDebug

Measure:

number of buckets used at any point in time,
number of times something is overwritten,
number of misses when getting an entry that has previously been added

If you rarely find a useful entry in the table, then the number of buckets may
be too small, or the replacement strategy may be unsuitable, etc.

35

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsOutline

1. Board game AI

2. MiniMaxing

3. Alpha-beta pruning

4. Transposition Tables and Memory

5. Memory-Enhanced Test Algorithms

36

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsMemory-Enhanced Test (MT) Algorithms

MT is simply a zero-width αβ negamax, using a transposition table to avoid
duplicate work.

same test used in the negamax algorithm but α = β = γ

A driver routine that is responsible for repeatedly using MT to zoom in on a
correct minimax value and work out the next move in the process. (MTD
algorithm)

37

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test Algorithms

1. Let γ be an upper bound on the score value
2. set γ to a guess as to the score (eg, use previous run)
3. calculate another guess by calling Test on the current board position, the

maximum depth, zero for the current depth, and gamma - ε
(< smallest increment of the evaluation function).

4. if the guess isn’t the same as γ, then go back to 3.
The guess is not accurate.

5. return the guess as the score; it is accurate.

def mtd(board, maxDepth, guess):
for i in 0..MAX_ITERATIONS:
gamma = guess
guess, move = text(board, maxDepth, 0, gamma-1)
If there’s no more improvement, stop looking
if gamma == guess: break

return move

38

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsFurther Tricks

Opening Books
list of move sequences + how good the average outcome will be
hash table very similar to a transposition table
Board positions can often belong to many different opening lines, and
openings, like the rest of the game, branch out in the form of a tree

Other Set Plays
set combinations of moves that occur during the game and especially at
the end of the game
may require more sophisticated pattern matching
subsections of the board and eval function

Using Opponent’s Thinking Time

39

Board game AI
MiniMaxing
Alpha-beta pruning
Transposition Tables and Memory
Memory-Enhanced Test AlgorithmsDeterministic games in practice

Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used an endgame database defining perfect play
for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions.

Kalaha (6,6) solved at IMADA in 2011

Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who
are too good.

Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge bases
to suggest plausible moves.

40

	Board game AI
	MiniMaxing
	Alpha-beta pruning
	Transposition Tables and Memory
	Memory-Enhanced Test Algorithms

