
DM810

Computer Game Programming II: AI

Lecture 2
Movement

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Representations
Kinematic Movement
Steering BehaviorsOutline

1. Representations

2. Kinematic Movement
Seeking
Wandering

3. Steering Behaviors

2

Representations
Kinematic Movement
Steering BehaviorsOutline

1. Representations

2. Kinematic Movement
Seeking
Wandering

3. Steering Behaviors

3

Representations
Kinematic Movement
Steering BehaviorsMovement

Movement of characters around the level (not about movement of faces)

Input: geometric data about the state of the world + current position of
character + other physical properties

Output: geometric data representing movement (velocity, accelerations)

For most games, characters have only two states: stationary + running

Running:

Kinematic movement: constant velocity, no acceleration nor slow down.

Steering behavior: dynamic movement with accelerations. Takes into
account current velocity of the character and outputs acceleration (eg,
Craig Reynolds, flocking)

Examples: Kinematic algorithm from A to B returns direction.
Dynamic/steering algorithm from A to B returns acceleration and deceleration

4

Representations
Kinematic Movement
Steering BehaviorsStatic Representations

Characters represented as points, center of mass (collision detection, obstacle
avoidance need also size but mostly handled outside of movement
algorithms).

In 2D:
x, z orthonormal basis of 2D space
2D movement takes place in x, z
(x, z) coordinates

Orientation value θ:
counterclockwise angle, in radiants
from positive z-axis

struct Static:
position # a 2D vector
orientation # single floating point value

then rendered in 3D (θ determines the rotation matrix)
5

Representations
Kinematic Movement
Steering BehaviorsStatic Representations

In 3D movement is more complicated: orientation implies 3 parameters

May be needed in flight simulators

But often one dim is gravity and rotation about the upright direction is
enough, the rest can be handled by animations)

Hybrid model:

In 2 1
2D

full 3D position (includes possibility for jumps)

orientation as a single value

huge simplification in math in change of a small loss in flexibility

6

Representations
Kinematic Movement
Steering BehaviorsOrientation in Vector Form

from angle θ to unit length vector in the direction that the character is facing

θ =

[
sinθ
cosθ

]

7

Representations
Kinematic Movement
Steering BehaviorsKinematic Representations

Kinematic algorithms:
position + orientation + velocity

2D 2 1
2D

linear velocity v vx, vz components vx, vy, vz components
angular velocity θ′ π/s π/s

struct Kinematic:
position # 2 or 3D vector
orientation # single floating point value
velocity # 2 or 3D vector
rotation # single floating point value

Steering algorithms:
return linear acceleration a and angular acceleration θ′′

struct SteeringOutput:
linear # 2D or 3D vector
angular # single floating point value

8

Representations
Kinematic Movement
Steering BehaviorsIndependent facing

Characters mostly face the direction of movement. Hence steering algs often
ignore rotation. To avoid abrupt changes orientation is moved proportionally
towards moving direction:

9

Representations
Kinematic Movement
Steering BehaviorsKinematic Representations

Updates (classical mechanics)

v(t) = r′(t) a(t) = r′′(t)

r = vt+ 1
2at

2 v = at
θ = θ′t+ 1

2θ
′′t2 θ′ = θ′′t

struct Kinematic:
position
orientation
velocity
rotation
def update(steering, time):

position += velocity * time + 0.5 *
steering.linear * time * time

orientation += rotation * time + 0.5 *
steering.angular * time * time

velocity += steering.linear * time
orientation += steering.angular * time

struct Kinematic:
position
orientation
velocity
rotation
def update(steering, time):

position += velocity * time
orientation += rotation * time
velocity += steering.linear * time
orientation += steering.angular * time

Velocities expressed as m/s thus support for variable frame rate.
Eg.: If v = 1m/s and the frame duration is 20ms è x = 20mm

10

Representations
Kinematic Movement
Steering BehaviorsNetwon’s Physics

Accelerations are determined by forces and inertia (F = ma)

To model object inertia:

object’s mass for the linear inertia

moment of inertia (or inertia tensor in 3D) for angular acceleration.

We could extend char data and movement algorithms with these, but mostly
needed for physics games, eg, driving game.

Actuation is a post-processing step that takes care of computing forces after
steering has been decided to produce the desired change in velocity (poses
feasibility problems)

11

Representations
Kinematic Movement
Steering BehaviorsOutline

1. Representations

2. Kinematic Movement
Seeking
Wandering

3. Steering Behaviors

12

Representations
Kinematic Movement
Steering BehaviorsKinematic Movement Algorithms

Input: static data
Output: velocity (often: on/off full speed or being stationary + target

direction)

From v we calculate orientation using trigonometry:

tan θ =
sin θ

cos θ
θ = arctan(−vx/vz)

(sign because counterclockwise from z-axis)
def getNewOrientation(currentOrientation, velocity):

if velocity.length() > 0:
return atan2(-static.x, static.z)

else: return currentOrientation

13

Representations
Kinematic Movement
Steering BehaviorsSeeking

Input: character’s and target’s static data
Output: velocity along direction to target

struct Static:
position
orientation

struct KinematicSteeringOutput:
velocity
rotation

class KinematicSeek:
character # static data char.
target # static data target
maxSpeed

def getSteering():
steering = new KinematicSteeringOutput()
steering.velocity = target.position - character.position # direction
steering.velocity.normalize()
steering.velocity *= maxSpeed
character.orientation = getNewOrientation(character.orientation, steering.

velocity)
steering.rotation = 0
return steering

Performance in time and memory? O(1)
15

Representations
Kinematic Movement
Steering Behaviors

getNewOrientation can be taken out

flee mode:
steering.velocity = character.position - target.position

problem: arrival must be stationary not wiggling back and forth

use large radius of satisfaction to target

use a range of movement speeds, and slow the character down as it
reaches its target

16

Representations
Kinematic Movement
Steering Behaviors

class KinematicArrive:
character
target
maxSpeed
radius # satisfaction radius
timeToTarget = 0.25 # time to target constant
def getSteering():

steering = new KinematicSteeringOutput()
steering.velocity = target.position - character.position # direction
if steering.velocity.length() < radius:
return None
steering.velocity /= timeToTarget # set vel. wrt time to target
if steering.velocity.length() > maxSpeed:
steering.velocity.normalize()
steering.velocity *= maxSpeed
character.orientation = getNewOrientation(character.orientation, steering.

velocity)
steering.rotation = 0
return steering

17

Representations
Kinematic Movement
Steering BehaviorsWander

A kinematic wander behavior moves in the direction of the character’s current
orientation with maximum speed.
Orientation is changed by steering.

class KinematicWander:
character
maxSpeed
maxRotation # speed
def getSteering():

steering = new KinematicSteeringOutput()
steering.velocity = maxSpeed * character.orientation.

asVector()
steering.rotation = random(-1,1) * maxRotation
return steering

Demo

19

Representations
Kinematic Movement
Steering BehaviorsOutline

1. Representations

2. Kinematic Movement
Seeking
Wandering

3. Steering Behaviors

20

Representations
Kinematic Movement
Steering BehaviorsSteering, Intro

movement algorithms that include accelerations

present in driving games but always more in all games.

range of different behaviors obtained by combination of fundamental
behaviors: eg. seek and flee, arrive, and align.

each behavior does a single thing, more complex behaviors obtained by
higher level code

often organized in pairs, behavior and its opposite (eg, seek and flee)

Input: kinematic of the moving character + target information
(moving char in chasing, representation of the geometry of the world in
obstacle avoidance, path in path following behavior; group of targets in
flocking – move toward the average position of the flock.)

Output: steering, ie, accelerations

21

Representations
Kinematic Movement
Steering BehaviorsVariable Matching

Match one or more of the elements of the character’s kinematic to a
single target kinematic (additional properties that control how the
matching is performed)

To avoid incongruencies: individual matching algorithms for each
element and then right combination later. (algorithms for combinations
resolve conflicts)

22

Representations
Kinematic Movement
Steering BehaviorsSeek and Flee

Seek tries to match the position of the character with the position of the
target. Accelerate as much as possible in the direction of the target.

struct Kinematic:
position
orientation
velocity
rotation
def update(steering, maxSpeed, time):
position += velocity * time
orientation += rotation * time
velocity += steering.linear * time
orientation += steering.angular * time
if velocity.length() > maxSpeed:
velocity.normalize()
velocity *= maxSpeed

struct SteeringOutput
linear # accleration
angular # acceleration

class Seek:
character # kinematic data
target # kinematic data
maxAcceleration

def getSteering():
steering = new SteeringOutput()
steering.linear = target.position -

character.position #
change here for
flee

steering.linear.normalize()
steering.linear *= maxAcceleration
steering.angular = 0
return steering

Demo

if velocity exceeds the maximum speed it is trimmed back in a
post-processing step of the update function.
Note, orientation removed: like before or by matching or proportional

23

Representations
Kinematic Movement
Steering BehaviorsArrive

Seek always moves to target with max acceleration. If target is standing it
will orbit around it. Hence we need to slow down and arrive with zero speed.

Two radii:

arrival radius, as before, lets the character get near enough to the target
without letting small errors keep it in motion.

slowing-down radius, much larger. max speed at radius and then
interpolated by distance to target

Direction as before
Acceleration dependent on the desired velocity to reach in a fixed time (0.1 s)

24

Representations
Kinematic Movement
Steering BehaviorsArrive

class Arrive:
character # kinematic data
target
maxAcceleration
maxSpeed
targetRadius
slowRadius
timeToTarget = 0.1 # time to arrive at target
def getSteering(target):

steering = new SteeringOutput()
direction = target.position - character.position
distance = direction.length()
if distance < targetRadius

return None
if distance > slowRadius:

targetSpeed = maxSpeed
else:

targetSpeed = maxSpeed * distance / slowRadius
targetVelocity = direction
targetVelocity.normalize()
targetVelocity *= targetSpeed
steering.linear = targetVelocity - character.velocity
steering.linear /= timeToTarget
if steering.linear.length() > maxAcceleration:

steering.linear.normalize()
steering.linear *= maxAcceleration

steering.angular = 0
return steering

25

Representations
Kinematic Movement
Steering BehaviorsAlign

match the orientation of the character with that of the target (just turn, no
linear acceleration). Angular version of Arrive.
Issue:
avoid rotating in the wrong direction because of the angular wrap

convert the result into the range (−π, π) radians by adding or subtracting
m · 2π

26

Representations
Kinematic Movement
Steering BehaviorsAlign

class Align:
character
target
maxAngularAcceleration
maxRotation
targetRadius
slowRadius
timeToTarget = 0.1
def getSteering(target):

steering = new SteeringOutput()
rotation = target.orientation - character.orientation
rotation = mapToRange(rotation)
rotationSize = abs(rotationDirection)
if rotationSize < targetRadius

return None
if rotationSize > slowRadius:

targetRotation = maxRotation
else:

targetRotation = maxRotation * rotationSize / slowRadius
targetRotation *= rotation / rotationSize
steering.angular = targetRotation - character.rotation
steering.angular /= timeToTarget
angularAcceleration = abs(steering.angular)
if angularAcceleration > maxAngularAcceleration:

steering.angular /= angularAcceleration
steering.angular *= maxAngularAcceleration

steering.linear = 0
return steering

27

Representations
Kinematic Movement
Steering BehaviorsVelocity Matching

So far we matched positions

Matching velocity becomes relevant when combined with other
behaviors, eg. flocking steering behavior

Simplified version of arrive

class VelocityMatch:
character
target
maxAcceleration
timeToTarget = 0.1
def getSteering(target):

steering = new SteeringOutput()
steering.linear = target.velocity - character.velocity
steering.linear /= timeToTarget
if steering.linear.length() > maxAcceleration:

steering.linear.normalize()
steering.linear *= maxAcceleration

steering.angular = 0
return steering

28

Representations
Kinematic Movement
Steering BehaviorsDelegated Behaviors

we saw the building blocks: seek and flee, arrive, align, and velocity
matching

calculate a target, either position or orientation, and delegate the
steering

author uses polymorphic style of programming (inheritance, subclasses)
to avoid duplicating code

29

	Representations
	Kinematic Movement
	Seeking
	Wandering

	Steering Behaviors

