
DM810

Computer Game Programming II: AI

Lecture 3
Movement

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Delegated Steering
Combined SteeringResume

Kinematic Movement

Seek

Wandering

Steering Movement

Variable Matching

Seek and Flee

Arrive

Align

Velocity Matching

2

Delegated Steering
Combined SteeringOutline

1. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

2. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

3

Delegated Steering
Combined SteeringOutline

1. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

2. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

4

Delegated Steering
Combined SteeringPursue and Evade

So far we chased based on position, but if target is far away it would look
awkward:

need to predict where it will be at some time in the future.

Craig Reynolds’s original approach is simple: we assume the target will
continue moving with the same velocity it currently has.

new position used for std seek behavior

use max time parameter to limit the prediction

6

Delegated Steering
Combined SteeringPursue and Evade

class Pursue (Seek): # inherited from Seek
maxPrediction # time limit
target
... Other data is derived from the superclass ...
def getSteering():

direction = target.position - character.position
distance = direction.length()
speed = character.velocity.length()
if speed <= distance / maxPrediction:

prediction = maxPrediction
else:

prediction = distance / speed
Seek.target = explicitTarget
Seek.target.position += target.velocity * prediction
return Seek.getSteering()

for evade just call Flee.getSteering()
if overshooting, then call Arrive

7

Delegated Steering
Combined SteeringFace

Look at target.
Calculates the target orientation first and delegate to Align the rotation

class Face (Align):
target
... Other data is derived from the superclass ...
def getSteering():

direction = target.position - character.position
if direction.length() == 0: return target
Align.target = explicitTarget
Align.target.orientation = atan2(-direction.x, direction.z)
return Align.getSteering()

9

Delegated Steering
Combined SteeringLooking Where You’re Going

We would like the character to face in the direction it is moving

In the kinematic movement algorithms we set it directly.

In steering, we can give the character angular acceleration

similar to Face

class LookWhereYoureGoing (Align):
... Other data is derived from the superclass ...
def getSteering():

if character.velocity.length() == 0: return
target.orientation = atan2(-character.velocity.x, character.velocity.z)
return Align.getSteering()

11

Delegated Steering
Combined SteeringWander

Move aimlessly around

In kinematic wander behavior, we perturbed the direction by a random
amount. This makes the rotation of the character erratic and twitching.

add an extra layer, making the orientation of the character indirectly
reliant on the random number generator.

circle around the character on which the target is constrained + Seek

or circle around the target + face

or target + look where you’re going

target will twitch on the circle, but the character’s orientation will
change smoothly.

13

Delegated Steering
Combined SteeringWander

class Wander (Face):
wanderOffset # forward offset of the wander
wanderRadius
wanderRate # max rate of change of the orientation
wanderOrientation # current orientation
maxAcceleration
... Other data is derived from the superclass ...
def getSteering():

wanderOrientation += randomBinomial() * wanderRate
targetOrientation = wanderOrientation + character.orientation
target = character.position + wanderOffset * character.orientation.asVector() #

center of the wander circle
target += wanderRadius * targetOrientation.asVector()
steering = Face.getSteering()
steering.linear = maxAcceleration * character.orientation.asVector() # full

acceleration towards
return steering

14

Delegated Steering
Combined SteeringPath Following

Takes a whole path (line segment or curve splines) as target (eg, a
patrol rute). Resulting behavior: move along the path in one direction

Delegated:

1. find nearest point along the path. (may be complex)

2. select a target at a fixed distance along the path.

3. Seek

16

Delegated Steering
Combined Steering

Predictive path following

smoother behavior but may short-cut the path

17

Delegated Steering
Combined SteeringPath Following

class FollowPath (Seek):
path # Holds the path to follow
pathOffset # distance along the path
currentParam # current position on path

... Other data from superclass ...
def getSteering():

currentParam = path.getParam(
character.position, currentPos)

targetParam = currentParam +
pathOffset

target.position = path.getPosition(
targetParam)

return Seek.getSteering()

class FollowPath (Seek):
path # Holds the path to follow
pathOffset # distance along the path
currentParam # current position on path
predictTime = 0.1 # prediction time
... Other data from superclass ...
def getSteering():

futurePos = character.position +
character.velocity * predictTime

currentParam = path.getParam(
futurePos, currentPos)

targetParam = currentParam +
pathOffset

target.position = path.getPosition(
targetParam)

return Seek.getSteering()

18

Delegated Steering
Combined SteeringSeparation

keep the characters from getting too close and being crowded.

if the behavior detects another character closer than some threshold
then evade with strength depending on distance
else zero.

linear:
strength = maxAcceleration * (threshold - distance) / threshold

inverse square:
strength = min(decayCoefficient / (distance * distance), maxAcceleration) # k is

a constant

20

Delegated Steering
Combined SteeringSeparation

class Separation:
character # kinematic data
targets # list of potential targets
threshold
decayCoefficient
maxAcceleration
def getSteering():

steering = new Steering
for target in targets:

direction = target.position - character.position
distance = direction.length()
if distance < threshold:

strength = min(decayCoefficient / (distance * distance), maxAcceleration)
direction.normalize()
steering.linear += strength * direction

return steering

Speed up by spatial data structures: Multi-resolution maps, quad- or octrees,
and binary space partition (BSP) trees

21

Delegated Steering
Combined SteeringCollision Avoidance

with large numbers of characters moving around: only engage if the
target is within a cone in front of the character.

average position and speed of all characters in the cone and evade that
target. Alternatively, closest character in the cone.

cone checked by dot product
if orientation.asVector() . direction >

coneThreshold:
do the evasion
else:
return no steering

Two problematic situations:

23

Delegated Steering
Combined SteeringCollision Avoidance

Closest approach: work out the closest predicted distance objects will have on
the basis of current speed and compare against some threshold radius.

p = pt − pc

v = vt − vc

t = −p · v
|v|2

position at time of closest approach:

p′
c = pc − vct

p′
t = pt − vtt

With group of chars: search for the character whose closest approach will
occur first and to react to this character only.

24

Collision Avoidance

class CollisionAvoidance:
character, targets
maxAcceleration
radius # collision threshold
def getSteering():

shortestTime = infinity
firstTarget = None # target that will collide first
firstMinSeparation, firstDistance, firstRelativePos, firstRelativeVel
for target in targets:

relativePos = target.position - character.position
relativeVel = target.velocity - character.velocity
relativeSpeed = relativeVel.length()
timeToCollision = (relativePos . relativeVel) / (relativeSpeed * relativeSpeed)
distance = relativePos.length()
minSeparation = distance-relativeSpeed*shortestTime
if minSeparation > 2*radius: continue
if timeToCollision > 0 and timeToCollision < shortestTime:

shortestTime = timeToCollision
firstTarget = target
firstMinSeparation = minSeparation
firstDistance = distance
firstRelativePos = relativePos
firstRelativeVel = relativeVel

if not firstTarget: return None
if firstMinSeparation <= 0 or distance < 2*radius: # colliding

relativePos = firstTarget.position - character.position
else:

relativePos = firstRelativePos + firstRelativeVel * shortestTime
relativePos.normalize()
steering.linear = relativePos * maxAcceleration
return steering

Delegated Steering
Combined SteeringObstacle and Wall Avoidance

So far targets are spherical and center of mass

More complex obstacles, eg, walls, cannot be easily represented in this
way.

cast one or more rays out in the direction of the motion.

If these rays collide with an obstacle,
then create a target to avoid the collision, and do seek on this target.

rays extend to a short distance ahead corresponding to a few seconds of
movement.

27

Delegated Steering
Combined Steering

class ObstacleAvoidance (Seek):
collisionDetector
avoidDistance
lookahead
... Other data from superclass ...
def getSteering():

rayVector = character.velocity
rayVector.normalize()
rayVector *= lookahead
collision = collisionDetector.getCollision(character.position, rayVector)
if not collision: return None
target = collision.position + collision.normal * avoidDistance
return Seek.getSteering()

getCollision implemented by casting a ray from position to position + moveAmount

and checking for intersections with walls or other obstacles.

28

Delegated Steering
Combined SteeringProblems and Work Around

29

Delegated Steering
Combined SteeringOutline

1. Delegated Steering
Pursue and Evade
Face
Looking Where You Are Going
Wander
Path Following
Separation
Collision Avoidance
Obstacle and Wall Avoidance

2. Combined Steering
Blending
Priorities
Cooperative Arbitration
Steering Pipeline

30

Delegated Steering
Combined SteeringCombined Steering

First pathfinding then Seek

in fact, due to collision avoidance, more complicated: need for
combination of steering behaviors

blending steering output and pipeline architectures

blending: executes all the steering behaviors and combines their results
using some set of weights or priorities.
is the final movement feasible?

arbitration: select one or more steering to have full control.

31

Delegated Steering
Combined SteeringWeighted Blending

crowd of rioting characters, want a mass movement where they stay by
the others, while keeping a safe distance.

blending: arriving at the center of mass of the group and separation
from nearby characters.

weighted linear sum of acceleration (weights do not need to sum to 1)
— if above maximum, set to max Acceleration

research on evolving weights using genetic algorithms or neural networks.
Results not encouraging.

33

Delegated Steering
Combined SteeringWeighted Blending

class BlendedSteering:
behaviors # list of behavior and weight
maxAcceleration
maxRotation

def getSteering():
steering = new Steering()
for behavior in behaviors:

steering += behavior.weight * behavior.behavior.getSteering()
steering.linear = max(steering.linear, maxAcceleration)
steering.angular = max(steering.angular, maxRotation)
return steering

34

Delegated Steering
Combined SteeringFlocking and Swarming

Flocking of boids (simulated birds) or herding of animals is obtained by
weighted blend of (Craig Reynolds):

separation, move away from boids that are too close

alignment and velocity matching, move in the same direction and at the
same velocity as the flock

cohesion, move toward the center of mass of the flock

Equal weights but order of importance would be separation, cohesion,
alignment. Also radius cut-off for only neighbors.

35

Delegated Steering
Combined SteeringProblems with Blending

blending works in sparse outdoor environments, in more constrained
settings hard to debug

conflicting behaviors: unstable and stable equilibrium

obstacles and narrow passages

nearsightedness, solved by pathfinding

36

Delegated Steering
Combined SteeringPriorities

seek and evade always produce an acceleration
collision avoidance, separation, and arrive may suggest no acceleration. But
when they do, it should not be ignored or diluted!

priority-based system: behaviors are arranged in groups with regular
blending weights. Groups are then placed in priority order.

if the total result of a group is small (≤ ε parameter), then it is ignored
and the next group is considered. Otherwise the acceleration is applied
immediately and other groups ignored.

Example: pursuing character with 3 groups: collision avoidance,
separation and pursuit

class PrioritySteering:
groups # list of BlendedSteering instances
epsilon
def getSteering():

for group in groups:
steering = group.getSteering()
if steering.linear.length() > epsilon or abs(steering.angular) > epsilon:

return steering
return steering

38

Delegated Steering
Combined SteeringProblems

adding a group (eg, wandering) can help to break unstable equilibria

Variable priorities:
compute the steering of each group, sort the steering in decreasing
order, select the first.
(adds computation time)

39

Delegated Steering
Combined SteeringCooperative Arbitration

Blending has stability problems

Priorities may lead to abrupt changes

Trend towards cooperation among different behaviors. That is, the
response of one steering behavior becomes context aware
 adds complexity.

Cooperative Steering is handled with

decision making techniques, ie, decision trees and state machines

pipeline techniques
41

Delegated Steering
Combined SteeringSteering Pipeline

Four stages in the pipeline:

targeters work out where the movement goal is
channels: positional target, orientation target, velocity target, and
rotation target
not “away from”

decomposers provide sub-goals that lead to the main goal,
like pathfinding, sequence of decomposers on increasing level of detail

constraints limit the way a character can achieve a goal,
represent moving or static obstacles
gets the path from actuators
determines sub-goals by finding the point of closest approach and
projecting it out so that we miss the obstacle by far enough
may require looping and deadlock resolution (call to planning or
pathfinding)

actuator limits the physical movement capabilities of a specific character.
may decided which channels of subgoals take priority and which are
eliminated

43

Delegated Steering
Combined Steering

class SteeringPipeline:
targeters
decomposers
constraints
actuator
constraintSteps
deadlock
kinematic # current kinematic data for the character

def getSteering():
goal # top level goal
for targeter in targeters:

goal.updateChannels(targeter.getGoal(kinematic))
for decomposer in decomposers:

goal = decomposer.decompose(kinematic, goal)
validPath = false
for i in 0..constraintSteps:

path = actuator.getPath(kinematic, goal)
for constraint in constraints:

if constraint.isViolated(path):
goal = constraint.suggest(path, kinematic, goal)
break continue

return actuator.output(path, kinematic, goal)
return deadlock.getSteering()

44

Delegated Steering
Combined Steering

Compromise between pathfinding and more simple and fast movement
behaviors.
If computationally costly needs to be spread through more than one frame.
Paths:

series of line segments, giving point-to-point movement information.

list of maneuvers, such as “accelerate” or “turn with constant radius.”
(suitable for complex steering requirements, including race car driving,
harder for constraint checking)

45

Delegated Steering
Combined Steering

Obstacle Avoidance

46

	Delegated Steering
	Pursue and Evade
	Face
	Looking Where You Are Going
	Wander
	Path Following
	Separation
	Collision Avoidance
	Obstacle and Wall Avoidance

	Combined Steering
	Blending
	Priorities
	Cooperative Arbitration
	Steering Pipeline

