
DM810

Computer Game Programming II: AI

Lecture 4
Movement

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Predicting Physics
Jumping
Coordinated Movement
Motor ControlResume

Kinematic Movement
Seek

Wandering
Steering Movement

Variable Matching

Seek and Flee

Arrive

Align

Velocity Matching

Delegated Steering
Pursue and Evade

Face

Looking Where You Are Going

Wander

Path Following

Separation

Collision Avoidance

Obstacle and Wall Avoidance
Combined Steering

Blending

Priorities

Cooperative Arbitration

Steering Pipeline
2

Predicting Physics
Jumping
Coordinated Movement
Motor ControlOutline

1. Predicting Physics
Firing Solutions

2. Jumping

3. Coordinated Movement

4. Motor Control

3

Predicting Physics
Jumping
Coordinated Movement
Motor ControlOutline

1. Predicting Physics
Firing Solutions

2. Jumping

3. Coordinated Movement

4. Motor Control

4

Predicting Physics
Jumping
Coordinated Movement
Motor ControlPredicting Physics

Needs for physics simulation:

current position of a ball and move to intercept the ball

character correctly calculating the best way to throw a ball so that it
reaches a teammate who is running.

where to stay to minimize chance of being hit by a grenade

shoot accurately, and respond to incoming fire

predicting trajectories

5

Predicting Physics
Jumping
Coordinated Movement
Motor ControlFiring Solution

Projectile trajectory

pt = p0 + utsmt+
gt2

2

sm muzzle velocity (speed at which the projectile left the weapon)
ut is the direction the weapon was fired
g = −9.81ms−1 but in games about the double is used

Predicting a Landing Spot

ti =
−uism ±

√
u2
ys

2
m − 2gy(py0 − pyt)

gy
py =

px0 + uxsmti
py0

pz0 + uzsmti

7

Predicting Physics
Jumping
Coordinated Movement
Motor ControlFiring Solution

Given a target a point E, a firing point S and sm (may be varied too, eg,
with grenades) we want to know the firing direction u, |u| = 1.

Ex = Sx + uxsmti +
1

2
gxt

2
i

Ey = Sy + uysmti +
1

2
gyt

2
i

Ez = Sz + uzsmti +
1

2
gzt

2
i

1 = u2
x + u2

y + u2
z

four eq. in four unknowns, leads to:

|g|2t4i − 4(g ·∆+ s2
m)t2i + 4|∆|2 = 0, ∆ = E − S

solve in t, and get two solutions

u =
2∆− gt2i
2smti

typically choose the lower one

8

Predicting Physics
Jumping
Coordinated Movement
Motor ControlDrag: Air Resistance

The path is not anymore a parabola

Highly simplified: the drag force can be described as: D = −kv − cv2, v
velocity of projectile and k, c are parameters. Equation of motion is non
linear differential equation

p′′t = g − kp′t − cp′t|p′t|

iterative method via simulation, alternatively, removing second term we can
solve

pt =
gt−Ae−kt

k
+B, A = smu− g

k
, B = p0 −

A

k

9

Predicting Physics
Jumping
Coordinated Movement
Motor ControlIterative Targeting Technique

We wish to solve the firing solution controlling its accuracy to make sure we
can hit small or large objects correctly.

start with a tentative direction

simulate real projectile motion by a physics system

continue guessing until within a radius from target

To guess one can use the equations without drag or the one with drag
simplified.

Binary search: find a tentative upper or lower bound, then the opposite
bound and continue by binary search.

Only possible when the physics engine that can easily set up isolated
simulations (ie, different from the current game world) and it is fast enough

Moving characters: simplifying assumption constant velocity and direction
10

Predicting Physics
Jumping
Coordinated Movement
Motor ControlOutline

1. Predicting Physics
Firing Solutions

2. Jumping

3. Coordinated Movement

4. Motor Control

11

Predicting Physics
Jumping
Coordinated Movement
Motor ControlJumping

Jumping between a platforms...
steering controller needs to check that the character is moving at i)
correct speed II) correct direction iii) jump action is executed at the
right moment. Rather complex!

Simpler support leaves to the designer the choice of jump points and
minimal component velocity in the right direction

12

Predicting Physics
Jumping
Coordinated Movement
Motor Control

To carry out the jump the character undergoes the following steps:

1. decide to make a jump by the pathfinding system or a simple steering
behavior

2. recognize which jump by pathfinding system or by steering behaviour
with lookahead.

3. once found the jump point to use: velocity matching steering behaviour
to bring the character into the jump point with correct velocity and
direction.

4. once on the jump point, launch a jump action, the game engine will do
the rest.

13

Predicting Physics
Jumping
Coordinated Movement
Motor Control

Problem resolutions:

designer incorporates more information into the jump point data, ie,
restrictions on approach velocities (bug prone)

designer puts jump points such that the AI cannot fail

incorporate in pathfinding

landing pads + characters use trajectory prediction to calculate the
velocity required to jump from jump point to landing pad + velocity
matching

vy is upwards velocity of jump and it is given, we wish to find , vx, vz.
Three equations in three unknowns

Ex = Sx + vxt
Ey = Sy + vyt+

1
2gyt

2

Ez = Sz + vzt

t =
−vy±

√
2g(Ey−Sy)+v2

y

g

vx = Ex−Sx

t

vz = Ez−Sz

t

14

Predicting Physics
Jumping
Coordinated Movement
Motor Control

class Jump (VelocityMatch):
jumpPoint
canAchieve = False
maxSpeed
maxYVelocity
def getSteering():
if not target:
target = calculateTarget()

if not canAchieve:
hence no steering towards target
return new SteeringOutput()

if character.position.near(target.
position) and

character.velocity.near(target.
velocity):

we jump hence no steeering
scheduleJumpAction()
return new SteeringOutput()

return VelocityMatch.getSteering()

def calculateTarget():
target = new Kinematic()
target.position = jumpPoint.

jumpLocation
sqrtTerm = sqrt(2*gravity.y*jumpPoint.

deltaPosition.y +
maxYVelocity*maxVelocity)

time = (maxYVelocity - sqrtTerm) /
gravity.y # 1st

if not checkJumpTime(time):
time = (maxYVelocity + sqrtTerm) /

gravity.y # 2nd
checkJumpTime(time)

def checkJumpTime(time):
vx = jumpPoint.deltaPosition.x / time
vz = jumpPoint.deltaPosition.z / time
speedSq = vx*vx + vz*vz
if speedSq < maxSpeed*maxSpeed:
target.velocity.x = vx
target.velocity.z = vz
canAchieve = true

return canAchieve

15

Predicting Physics
Jumping
Coordinated Movement
Motor ControlHole Fillers

jump detector area

character leads towards them with a mechanism opposite to well
avoidance

when the character enters in the area it jumps

more flexibility in jumping point

no control on the landing point

16

Predicting Physics
Jumping
Coordinated Movement
Motor ControlOutline

1. Predicting Physics
Firing Solutions

2. Jumping

3. Coordinated Movement

4. Motor Control

17

Predicting Physics
Jumping
Coordinated Movement
Motor ControlCoordinate Movement

Individuals can

1. make decisions that compliment each other or (bottom up)

2. can make a decision as a whole and move in a prescribed, coordinated
group (top down)

Formation motion is the movement of a group of characters retaining group
organization (under 2)
Formation: a set of locations where a character can be positioned. One
location is the leader position.

18

Predicting Physics
Jumping
Coordinated Movement
Motor Control

Fixed Formations

The leader moves independently from formation

the others follow with no need for kinematics or steering:

ps = pl + s
ωs = ωl + ωs

but leader needs to take care of the size of the formation when moving
Scalable Formations
Emergent Formations

each character has its own steering system using the arrive behavior.

each agent selects as target one of the others agents in the formation
(eg, V formation)

the formation emerges from the individual rules of each character, like in
flocking

characters can react individually

it may be hard to design rules for the desired shape 19

Predicting Physics
Jumping
Coordinated Movement
Motor Control

Two-level formation steering:
First level:

fixed formation (with a leader that moves it)

characters move autonomously avoiding collisions and targetting
locations with an arrive behaviour

Second level:
actually no need for a leader, the formation moves alone around an
anchor point

steering of anchor points can be simplified, only important obstacles to
consider, but speed moderated if agents not in their slots.

offset to move a small distance ahead
of the center of mass
pa = pc + koffsetvc

pc center of mass of chars
p′si = psi − pc

(similarly for velocity and rotation)

20

Predicting Physics
Jumping
Coordinated Movement
Motor Control

def updateSlots():
anchor = getAnchorPoint()
orientationMatrix = anchor.orientation.asMatrix()
for i in 0..slotAssignments.length():

relativeLoc = pattern.getSlotLocation(slotAssignments[i].slotNumber)
location = new Static()
location.position = relativeLoc.position * orientationMatrix + anchor.position
location.orientation = anchor.orientation + relativeLoc.orientation
location.position -= driftOffset.position
location.orientation -= driftOffset.orientation
slotAssignments[i].character.setTarget(location)

21

Predicting Physics
Jumping
Coordinated Movement
Motor ControlExample

class DefensiveCirclePattern:
characterRadius
def calculateNumberOfSlots(assignments):
filledSlots = 0
for assignment in assignments:
if assignment.slotNumber >=

maxSlotNumber:
filledSlots = assignment.slotNumber

numberOfSlots = filledSlots + 1
return numberOfSlots

def getDriftOffset(assignments):
center = new Static() # center of mass
for assignment in assignments:
location = getSlotLocation(assignment

.slotNumber)
center.position += location.position
center.orientation += location.

orientation
numberOfAssignments = assignments.

length()
center.position /= numberOfAssignments
center.orientation /=

numberOfAssignments
return center

def getSlotLocation(slotNumber):
angleAroundCircle = slotNumber /

numberOfSlots * PI * 2
The radius depends on the radius of

the character,
and the number of characters in the

circle:
we want there to be no gap between

character’s shoulders.
radius = characterRadius / sin(PI /

numberOfSlots)
Create a location, and fill its

components based
on the angle around circle.
location = new Static()
location.position.x = radius * cos(

angleAroundCircle)
location.position.z = radius * sin(

angleAroundCircle)
The characters should be facing out
location.orientation =

angleAroundCircle
return location

22

Predicting Physics
Jumping
Coordinated Movement
Motor ControlFormations of formations

Anchor point of one formation tries to stay in a slot position of another
formation
wedge (V) formation + column formation

23

Predicting Physics
Jumping
Coordinated Movement
Motor ControlSlot Roles and Assignments

Problems:
slots may have roles that cannot be occupied by whatever character, eg,
leader slots (hard roles)

there may be more than one agent for each role

each character may have one or more roles that it can fulfill

May end up in an infeasible situation in which characters are left stranded
with nowhere to go.

Simplification: use soft slots with a slot cost for each character

24

Predicting Physics
Jumping
Coordinated Movement
Motor ControlSlot Assignment

Brute force, ie, all slot assignments, is not practicable

assignment problem by Hungarian method in O(n3) but generalized
assignment problem is NP-hard

heuristic:

1. sort characters highly constrained first and flexible characters last,
ie in increasing order of

∑
j∈A(i) 1/(1 + cij), cij is slot cost for

agent i, A(i) is feasible slots for i.
cij can include distance.

2. assign the agents considered in the formed order to the best free
slot.

Even this can be too slow and must be split over several frames.

25

Predicting Physics
Jumping
Coordinated Movement
Motor ControlDynamic Slots and Plays

Formations that change shape over time, eg, in sport games

changes of patterns can be jumps (arrive behaviour of characters will
take care) or smooth

typically no need for more than one level (hence no need for drift)

26

Predicting Physics
Jumping
Coordinated Movement
Motor ControlTactical Movement

Another application of dynamic formation: approximation of bounding
overwatch. Formation moves in a predictable sequence between whatever
cover is near to the characters.

cover points are in the environment rather than geometrically determined.

27

Predicting Physics
Jumping
Coordinated Movement
Motor ControlOutline

1. Predicting Physics
Firing Solutions

2. Jumping

3. Coordinated Movement

4. Motor Control

28

Predicting Physics
Jumping
Coordinated Movement
Motor ControlMotor Control

increasingly, motion is being controlled by physics simulation: actuators

Steering algorithms send movement requests to physics engine and
actuators check feasibility

eventually actuators must change the suggestion of the steering alg in
order to match animation feats (eg, car turning)

Two ways to implement this:

output filtering: simply remove all the components of the steering
output that cannot be achieved.
it does not work well where there is a small margin of error in the
steering requests.
capability-sensitive steering: actuators brought within steering
(not with combined steering)

29

Predicting Physics
Jumping
Coordinated Movement
Motor ControlCapability-Sensitive Steering

if few actions try them all and choose the best
otherwise, heuristics

30

Predicting Physics
Jumping
Coordinated Movement
Motor ControlHeuristics

Human characters:

If stationary or moving very slowly, and at a very small distance from its
target, step there directly, even if this involves moving backward or
sidestepping.

If the target is farther away, the character will first turn on the spot to
face its target and then move forward to reach it.

If moving with some speed, and target is within a speed-dependent arc
in front of it, then continue to move forward but add a rotational
component (still using the straight line animation – hence some limit to
how much rotation)

If the target is outside its arc, then it will stop moving and change
direction on the spot before setting off once more.

31

Predicting Physics
Jumping
Coordinated Movement
Motor ControlHeuristics

Cars and motorbikes

If stationary, then accelerate.

If moving and target lies between the two arcs, then brake while turning
at the maximum rate that does not cause a skid.

If target inside the forward arc, then continue moving forward and steer
toward it. Move as fast as possible

If target inside the rearward arc, then accelerate backward and steer
toward it.

 hard to parametrize 32

	Predicting Physics
	Firing Solutions

	Jumping
	Coordinated Movement
	Motor Control

