
DM810

Computer Game Programming II: AI

Lecture 5
3D Movement
Path Finding

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Movement in 3D
PathfindingResume

Kinematic Movement
Seek

Wandering

Steering Movement
Variable Matching

Seek and Flee

Arrive

Align

Velocity Matching

Delegated Steering
Pursue and Evade

Face

Looking Where You Are Going

Wander

Path Following

Separation

Collision Avoidance

Obstacle and Wall Avoidance

Combined Steering
Blending

Priorities

Cooperative Arbitration

Steering Pipeline
2

Movement in 3D
PathfindingResume

Predicting Physics

Firing Solutions

Jumping

Coordinated Movement

Motor Control

3

Movement in 3D
PathfindingOutline

1. Movement in 3D

2. Pathfinding

4

Movement in 3D
PathfindingOutline

1. Movement in 3D

2. Pathfinding

5

Movement in 3D
PathfindingMovement in 3D

So far we had only orientation and rotation in the up vector.

roll > pitch > yaw
 we need to bring the third dimension in orientation and rotation.

6

Movement in 3D
PathfindingEuler angles

Orientation and rotation in 3D have 3 degrees of freedom 3D vector.

Euler angles represent the spatial
orientation of any coordinate system
(X,Y, Z) as a composition of
rotations from a coordinate system of
reference (x, y, z).

α between x-axis and line of
nodes.

β between z-axis and Z-axis.

γ between the line of nodes and
the X-axis.

7

Movement in 3D
PathfindingRotation matrix

Define unit vectors called basis.

The rotation is then fully described by specifying the coordinates (scalar
components) of this basis in its current (rotated) position, in terms of the
reference (non-rotated) coordinate axes.

The three unit vectors u,v and w which form the rotated basis each consist
of 3 coordinates, yielding a total of 9 parameters. These parameters can be
written as elements of a 3× 3 matrix A, called rotation matrix.

A =

 ux vx wx

uy vy wy

uz vz wz

combining rotations:
R = ZαXβZγ

conditions for u, v, w to be a 3D orthonormal
basis:

|u| = |v| = 1

u · v = 0

u× v = w

6 conditions (cross product contains 3)
 rotation matrix has 3 degrees of freedom

8

Movement in 3D
PathfindingEuler axis and angle

Any rotation can be expressed as a
single rotation about some axis
(Euler’s rotation theorem). The axis
can be represented as a 3D unit vector
e = [ex ey ez]

T, and the angle by a
scalar θ.

r = θe

Combining two successive rotations with this representation is not
straightforward (in fact does not satisfy the law of vector addition)

9

Movement in 3D
PathfindingQuaternions

Quaternion: normalized 4D vector: q̂ = [q1 q2 q3 q4]
T

related to axis and angle:

q1 = cos (θ/2)

q2 = ex sin (θ/2)

q3 = ey sin (θ/2)

q4 = ez sin (θ/2)

it follows:

q21 + q22 + q23 + q24 = 1

a+ bi+ cj + dk with {a, b, c, d} ∈ R
and where {1,i, j, k} are the basis
(hypercomplex numbers).
The following must hold for the basis

i2 = j2 = k2 = ijk = −1

which determines all the possible
products of i, j, and k:

ij = k, ji = −k,
jk = i, kj = −i,
ki = j, ik = −j,

A good 3D math library of the graphics engine will have the relevant code to
carry out combinations rotations, ie, products of quaternions.

10

Movement in 3D
Pathfinding

Expressing rotations in 3D as unit quaternions instead of matrices has some
advantages:

Extracting the angle and axis of rotation is simpler.

Expression of the rotation matrix in terms of quaternion parameters
involves no trigonometric functions

Simple to combine two individual rotations represented as quaternions
using a quaternion product

More compact than the matrix representation and less susceptible to
round-off errors

Quaternion elements vary continuously over the unit sphere in R4, as
orientation changes, avoiding discontinuous jumps

Interpolation is more straightforward. See for example slerp.
They must sometimes be re-normalized due to rounding errors, but low
computational cost.

11

Movement in 3D
PathfindingSteering Behaviours in 3D

Behaviours that do not change angles do not change: seek, flee, arrive,
pursue, evade, velocity matching, path following, separation, collision
avoidance, and obstacle avoidance

Behaviours that change: align, face, look where you’re going, and
wander

12

Movement in 3D
PathfindingAlign

Input a target orientation
Output rotation match character’s current orientation to target’s.

q̂ quaternion that transforms current orientation ŝ into t̂ is given by:

q̂ = ŝ−1t̂

ŝ−1 = ŝ∗ conjugate because unit quaternion (corresponds to rotate with
opposite angle, θ−1 = −θ)

ŝ =

1
i
j
k

−1

=

1
−i
−j
−k

To convert q̂ back into an axis and angle:

θ = 2arccos q1 e =
1

2 sin(θ/2)

q2q3
q4

Rotation speed: equivalent to 2D start at zero and reach θ and combine
this with the axis e.

13

Movement in 3D
PathfindingFace and Look WYAG

Input a vector (from the current character position to a target, or the
velocity vector).
Output a rotation to align the vector

In 2D we used arctan knowing the two vectors. In 3D infinite possibilities:
start with a “base” b orientation and find rotation r through the minimum
angle possible so that its local z-axis (zb) points along the target vector t.

r = zb × t = (|zb||t| sin θ)er = sin θer

Since |er| = 1 then θ = arcsin |r|. Then divide divide r by θ to get the axis.

Target orientation t̂: turn axis and angle in a quaternion r̂, together with
basis quaternion b̂ (commonly [1 0 0 0]) and compute:

t̂ = b̂−1r̂ if sin θ = 0: t̂ =

{
+b̂ ẑb = ẑt

−b̂ otherwise

14

Movement in 3D
PathfindingFace in 3D

class Face3D (Align3D):
baseOrientation
target
... Other data is derived from the superclass ...
def calculateOrientation(vector):

Get the base vector by transforming the z−axis by base
orientation (this only needs to be done once for each base
orientation, so could be cached between calls).
baseZVector = new Vector(0,0,1) * baseOrientation # rotate vector by quaternion
if baseZVector == vector:

return baseOrientation
if baseZVector == -vector:

return -baseOrientation

Otherwise find the minimum rotation from the base to the target
change = crossproduct(baseZVector, vector)
angle = arcsin(change.length())
axis = change
axis.normalize()
return new Quaternion(cos(angle/2), sin(angle/2)*axis.x, sin(angle/2)*axis.y, sin

(angle/2)*axis.z)

def getSteering():
direction = target.position - character.position # character.velocity.normalize()
if direction.length() == 0: return target
Align3D.target = explicitTarget
Align3D.target.orientation = calculateOrientation(direction)
return Align3D.getSteering()

15

Movement in 3D
Pathfinding

Products between quaternions:

v̂ = q̂v̂q̂∗ v̂ =

0
vx
vy
vz

p̂q̂ =

p1q1 − piqi − pjqj − pkqk
p1qi + piq1 + pjqk − pkqj
p1qj + pjq1 − piqk + pkqi
p1qk + pkq1 + piqj − pjqi

16

Movement in 3D
PathfindingWandering

In 2D

keeps target in front of character
and turning angles low

In 3D:

3D sphere on which the target is
constrained,

offset at a distance in front of the
character.

to represent location of target on the
sphere, more than one angle.
quaternion makes it difficult to
change by a small random amount

3D vector of unit length. Update its
position adding random amount
< 1/

√
3 to each component and

normalize it again.

17

Movement in 3D
Pathfinding

To simplify the math:

wander offset (from char to center of sphere) is a vector with only a
positive z coordinate, with 0 for x and y values.

maximum acceleration is also a 3D vector with non-zero z value

Use Face to rotate and max acceleration toward target

Rotation in x–z plane more important than up and down (eg for flying
objects) two radii

18

Movement in 3D
Pathfinding

class Wander3D (Face3D):
wanderOffset # 3D vector
wanderRadiusXZ
wanderRadiusY
wanderRate # < 1/sqrt(3) = 0.577
wanderVector # current wander offset orientation
maxAcceleration # 3D vector
... Other data is derived from the superclass ...
def getSteering():
Update the wander direction
wanderVector.x += randomBinomial() * wanderRate
wanderVector.y += randomBinomial() * wanderRate
wanderVector.z += randomBinomial() * wanderRate
wanderVector.normalize()
Calculate the transformed target direction and scale it
target = wanderVector * character.orientation
target.x *= wanderRadiusXZ
target.y *= wanderRadiusY
target.z *= wanderRadiusXZ
Offset by the center of the wander circle
target += character.position + wanderOffset * character.orientation
steering = Face3D.getSteering(target)
steering.linear = maxAcceleration * character.orientation
return steering

19

Movement in 3D
PathfindingFaking Rotation Axes

In aircraft, typically, rolling and pitching occur only with a turn

bring 3D only into actuators, calculate the best way to trade off pitch,
roll, and yaw based on the physical characteristics. Maybe costly.

add a steering behavior that forces roll whenever there is a rotation

blending approach with the following orientation values in steering:
1. keep orientation θ around the up vector as the kinematic orientation.

2. find the pitch φ by looking at the component of the vehicle’s
velocity in the up direction.
The output orientation has an angle above the horizon given by:

φ = arcsin
v · u
|v|

u is a unit vector in the up direction

3. find the roll ψ by looking at the vehicle’s rotation speed around the
up direction.

ψ = arctan
r

k
r is the rotation, k is a constant

20

def getFakeOrientation(kinematic, speedThreshold, rollScale):
speed = kinematic.velocity.length()
if speed < speedThreshold:
if speed == 0:
return kinematic.orientation

else:
fakeBlend = speed / speedThreshold
kinematicBlend = 1.0 - kinematicBlend

else:
fakeBlend = 1.0
kinematicBlend = 0.0

yaw = kinematic.orientation # y−axis orientation
pitch = asin(kinematic.velocity.y / speed) # tilt
roll = atan2(kinematic.rotation, rollScale) # roll
result = orientationInDirection(roll, Vector(0,0,1))
result *= orientationInDirection(pitch, Vector(1,0,0))
result *= orientationInDirection(yaw, Vector(0,1,0))
return result

quaternion for rotation by a given angle around a fixed axis.
def orientationInDirection(angle, axis):
result = new Quaternion()
result.r = cos(angle*0.5)
sinAngle = sin(angle*0.5)
result.i = axis.x * sinAngle
result.j = axis.y * sinAngle
result.k = axis.z * sinAngle
return result

Movement in 3D
PathfindingOutline

1. Movement in 3D

2. Pathfinding

22

Movement in 3D
PathfindingMotivation

For some characters, the route can be prefixed but more complex characters
don’t know in advance where they’ll need to move.

a unit in a real-time strategy game may be ordered to any point on the
map by the player at any time

a patrolling guard in a stealth game may need to move to its nearest
alarm point to call for reinforcements,

a platform game may require opponents to chase the player across a
chasm using available platforms.

We’d like the route to be sensible and as short or rapid as possible

 pathfinding (aka path planning) finds the
way to a goal decided in decision making

23

Movement in 3D
PathfindingGraph representation

Game level data simplified into directed non-negative weighted graph

node: region of the game level, such
as a room, a section of corridor, a
platform, or a small region of
outdoor space

edge/arc: connections, they can be
multiple

weight: time or distance between
representative points or a
combination thereof

24

Movement in 3D
PathfindingDijkstra – Uniform cost search

shortest path algorithm from start point to all other points
Invariants:
Processing current node

Lists of Nodes
Each node belongs to one of three categories:

in closed list, having been processed in its own iteration;

in open list, having been visited from another node, but not yet
processed in its own right;

or it is unvisited.
At each iteration, the algorithm chooses the node from the open list that has
the smallest cost-so-far. After processing the node is moved from the open to
the closed list.

25

Movement in 3D
Pathfinding

What if we arrive at a node that instead than unvisited is open or closed?

if it is higher than the recorded value, don’t update the node and don’t
change what list it is on.

if the new cost-so-far value is smaller than the node’s current cost-so-far,
update it with the better value. Move node to the open list. If it was on
the closed list (will never be the case), remove it from there.

26

Movement in 3D
Pathfinding

The algorithm terminates when the open list is empty. Enough when the goal
node is the smallest node on the open list (note: not when it is first found).

The path is found by going backward from goal to start

Data structures:

list used to accumulate the final path: not crucial, basic linked list

graph : not critical: adjacency list, best if arcs are stored in contiguous
memory, in order to reduce the chance of cache misses when scanning

open and closed lists: critical!
1. push

2. remove

3. extract min

4. find an entry
http://stegua.github.com/blog/2012/09/19/dijkstra/

27

http://stegua.github.com/blog/2012/09/19/dijkstra/

Movement in 3D
Pathfinding

O(nm) in space and memory (if O(1) data structures).

solution includes shortest path to everywhere (wasteful)
many fill nodes.

28

Movement in 3D
PathfindingA∗ search

shortest path algorithm from start point to goal point

Idea: avoid expanding paths that are already expensive,
instead of considering the open node with the lowest cost-so-far value, choose
the node that is heuristically most likely to lead to the shortest overall path.

Evaluation function f(n) = g(n) + h(n)

g(n) = cost-so-far to reach n
h(n) = estimated cost to goal from n
f(n) = estimated total cost of path through n to goal

29

Movement in 3D
Pathfinding

30

Movement in 3D
Pathfinding

Termination
When the node in the open list with the smallest cost-so-far (not) has a
cost-so-far value greater than the cost of the path we found to the goal.
(like in Dijkstra)

Note: with any heuristic, when the goal node is the smallest
estimated-total-cost node on the open list we are not done since a node that
has the smallest estimated-total-cost value may later after being processed
need its values revised.

In other terms: a node may need revision even if it is in the closed list (6=
Dijkstra) because. We may have been excessively optimistic in its evaluation
(or too pessimistic with the others).

(Some implementations may stop already when the goal is first visited, or
expanded, but then not optimal)

However if the heuristic has some properties then we can stop earlier:

31

Movement in 3D
Pathfinding

If the heuristic is:
admissible, i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n
(h(n) ≥ 0, so h(G) = 0 for any goal G)

consistent (triangular inequality holds, see later)
then when A∗ selects a node for expansion (smallest estimated-total-cost),
the optimal path to that node has been found.

E.g., hSLD(n) never overestimates the actual road distance

Note:

consistent ⇒ admissible

if the graph is a tree, then admissible is enough.

33

	Movement in 3D
	Pathfinding

