
DM810

Computer Game Programming II: AI

Lecture 6
Pathfinding

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Pathfinding
Heuristics
World RerpresentationsOutline

1. Pathfinding

2. Heuristics

3. World Rerpresentations

2

Pathfinding
Heuristics
World RerpresentationsOutline

1. Pathfinding

2. Heuristics

3. World Rerpresentations

3

Pathfinding
Heuristics
World RerpresentationsBest first search

State Space Search
We assume:

A start state

A successor function

A goal state or a goal test function

Choose a metric of best
Expand states in order from best to worst

Requires:
Sorted open list/priority queue
closed list
unvisited nodes

4

Pathfinding
Heuristics
World RerpresentationsBest first search

Definitions

Node is expanded/processed when taken off queue

Node is generated/visited when put on queue

g-cost is the cost from the start to the current node

c(a, b) is the edge cost between a and b

Algorithm Measures

Complete
Is it guaranteed to find a solution if one exists?

Optimal
Is it guaranteed the find the optimal solution?

Time

Space

5

Pathfinding
Heuristics
World RerpresentationsBest-First Algorithms

Best-First Pseudo-Code

Put start on OPEN
While(OPEN is not empty)
Pop best node n from OPEN
if (n == goal) return path(n, goal)
for each child of n: # generate children
put/update value on OPEN/CLOSED

return NO PATH

Best-First child update
If child on OPEN, and new cost is less
Update cost and parent pointer

If child on CLOSED, and new cost is less
Update cost and parent pointer, move node

to OPEN
Otherwise
Add to OPEN list

6

Pathfinding
Heuristics
World RerpresentationsSearch Algorithms

Dijkstra’s algorithm ≡ Uniform-Cost Search (UCS)
 Best-first with g-cost
Complete? Finite graphs yes, Infinite yes if ∃ finite cost path + weights > ε
Optimal? yes

Idea: reduce fill nodes: Heuristic: estimate of the cost from a given state to
the goal

Pure Heuristic Search / Greedy Best-first Search (GBFS)
 Best-first with h-cost
Complete? Only on finite graph
Optimal? No

A∗

 best-first with f -cost, f = g + h
Optimal? depends on heuristic

7

Pathfinding
Heuristics
World RerpresentationsTheorem

If the heuristic is:
admissible, i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n
(h(n) ≥ 0, so h(G) = 0 for any goal G)

consistent (triangular inequality holds, see later)
then when A∗ selects a node for expansion (smallest estimated-total-cost),
the optimal path to that node has been found.

E.g., hSLD(n) never overestimates the actual road distance

Note:

consistent ⇒ admissible

if the graph is a tree, then admissible is enough.

8

Pathfinding
Heuristics
World RerpresentationsConsistency

A heuristic is consistent if

n

c(n,a,n’)

h(n’)

h(n)

G

n’

h(n) ≤ c(n, a, n′) + h(n′)

If h is consistent, we have

f(n′) = g(n′) + h(n′)

= g(n) + c(n, a, n′) + h(n′)

≥ g(n) + h(n)

= f(n)

I.e., f(n) is nondecreasing along any path.

9

Pathfinding
Heuristics
World RerpresentationsAdmissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance(i.e., no. of squares from desired location1

of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) = 6
h2(S) = 4+0+3+3+1+0+2+1 = 14

10

Pathfinding
Heuristics
World RerpresentationsOptimality of A∗ (standard proof)

Suppose some suboptimal goal G2 has been generated and is in the queue.
Let n be an unexpanded node on a shortest path to an optimal goal G1.

G

n

G2

Start

f(G2) = g(G2) since h(G2) = 0

> g(G1) since G2 is suboptimal

≥ f(n) since h is admissible

Since f(G2) > f(n), A∗ will never select G2 for expansion
11

Pathfinding
Heuristics
World RerpresentationsOptimality of A∗

Lemma: A∗ expands nodes in order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi, where fi < fi+1

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

12

Pathfinding
Heuristics
World RerpresentationsA∗ vs. Breadth First Search

13

Pathfinding
Heuristics
World RerpresentationsProperties of A∗

Complete? Yes, unless there are infinitely many nodes with f ≤ f(G)
Optimal? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Time O(lm), Exponential in [relative error in h × length of sol.]
l number of nodes whose total estimated-path-cost is less than that of the
goal.
Space O(lm) Keeps all nodes in memory

14

Pathfinding
Heuristics
World RerpresentationsData Structures

Same as Dijkstra:

list used to accumulate the final path: not crucial, basic linked list

graph : not critical: adjacency list, best if arcs are stored in contiguous
memory, in order to reduce the chance of cache misses when scanning

open and closed lists: critical!
1. push

2. remove

3. extract min

4. find an entry

15

Pathfinding
Heuristics
World Rerpresentations

Priority queues
keep list sorted by finding right insertion point when adding.
If we use an array rather than a linked list, we can use a binary search

Priority heaps

array-based data structure which represents a
tree of elements.

each node has up to two children, both with
higher values.

balanced and filled from left to right

node i has children in positions 2i and 2i+ 1

extract min in O(1)

adding O(log n)

find O(log n)

remove O(log n)

16

Pathfinding
Heuristics
World RerpresentationsBucketed Priority Queues

partially sorted data structure

buckets are small lists that
contain unsorted items within a
specified range of values.

buckets are sorted but their
contents not

exctract min: go to the first
non-empty bucket and search its
contents

find, add and remove depend on
numebr of buckets and can be
tuned.

extensions: multibuckets

17

Pathfinding
Heuristics
World RerpresentationsImplementation Details

Data structures:

author: depends on the size of the graph with million of nodes bucket
priority list may outperform priority buffer
But see http://stegua.github.com/blog/2012/09/19/dijkstra/

Heuristics:

implemented as functions or class.

receive a goal so no code duplication

pathfindAStar(graph, start, end, new Heuristic(end))

efficiency is critical for the time of pathfind
Problem background, Pattern Databases, precomputed memory-based
heuristic

Other:

overall must be very fast, eg, 100ms split in 1ms per frame

10MB memory
18

http://stegua.github.com/blog/2012/09/19/dijkstra/

Pathfinding
Heuristics
World Rerpresentations

Break ties towards states with higher g-cost

If a successor has f-cost as good as the front of OPEN
Avoid the sorting operations

Make sure heuristic matches problem representation
With 8-connected grids don’t use straight-line heuristic

weighted A∗: f(n) = (1− w)g(n) + wh(n)

19

Pathfinding
Heuristics
World RerpresentationsNode Array A∗

Improvement of A∗ when nodes are numbered with sequential integers.

Trade memory for speed

Allocate array of pointers to records for all nodes of the graph. (many
nodes will be not used)

Thus Find in O(1)

A field in the record indicates: unvisited, open, or closed

Closed list can be removed

Open list still needed

20

Pathfinding
Heuristics
World RerpresentationsOutline

1. Pathfinding

2. Heuristics

3. World Rerpresentations

21

Pathfinding
Heuristics
World RerpresentationsHeuristics

Admissible (underestimating):

has the nice properties of optimality

more influence by cost-so-far

increases the runtime, gets close to Dijkstra

in practice beliviability is more important than optimality

Inadmissible (overestimating)

less influence by cost-so-far

if overestimate by ε then path at most ε worse

22

Pathfinding
Heuristics
World Rerpresentations

Common heuristics

Euclidean heuristic (straght line without obstacles, underestimating)
good in outdoor, bad in indoor

Octile distance

Cluster heuristic: group nodes together in clusters (eg, cliques)
representing some highly interconnected region.
Precompute lookup table with shortest path between all pairs of clusters.
If nodes in same cluster then Euclidean distance else lookup table

Problems: all nodes of a cluster will have the same heuristic. Maybe add
Euclidean heuristic in the cluster?

23

Pathfinding
Heuristics
World Rerpresentations

Visualization of the fill

24

Pathfinding
Heuristics
World RerpresentationsDominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs:

d = 14 IDS = 3,473,941 nodes
A∗(h1) = 539 nodes
A∗(h2) = 113 nodes

d = 24 IDS ≈ 54,000,000,000 nodes
A∗(h1) = 39,135 nodes
A∗(h2) = 1,641 nodes

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

25

Pathfinding
Heuristics
World RerpresentationsRelaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

26

Pathfinding
Heuristics
World RerpresentationsOutline

1. Pathfinding

2. Heuristics

3. World Rerpresentations

28

Pathfinding
Heuristics
World RerpresentationsWorld Representations

Division scheme: the way the game level is divided up into linked reagions
that make the nodes and edges.
Properties of division schemes:

quantization/localization
from game world locations to graph nodes and viceversa

generation
how a continous space is split in regions
manual techniques: Dirichlet domain
algorithmic techniques: tile graphs, points of visibility, and navigation
meshes

validity
all points in two connected reagions must be reachable from each other.

29

Pathfinding
Heuristics
World RerpresentationsTile graphs

Division scheme:
Tile-based levels split world into regular square (or exagonal) regions.
(in 3D, for outdoor games graphs based on height and terrain data.)
Nodes represent tiles, connections with 8 neighboring tiles

Quantization and Localization
Each point is mapped in a tile by:
tileX = floor(x / tileSize)
tileZ = floor(z / tileSize)

Generation:
automatic at run time, no need to store
separately. Allow blocked tiles.

Validity:
with partial blockage might be not guaranteed.

Remarks:
it may end up with large number of tiles
paths may look blocky and irregular

30

Pathfinding
Heuristics
World RerpresentationsDirichelet Tassellation

Way of dividing space into a number of regions
(aka Vornoi diagram/decomposition)
A set of points (called seeds or sites) is specified
beforehand.
For each seed there will be a corresponding region
consisting of all points closer to that seed than to any
other.

Dual of Delaunay triangulation

no point inside circumcircles of
triangles (their centers in red).

connecting circumcircles Vornoi
decomposition

31

Pathfinding
Heuristics
World Rerpresentations

Division scheme:
Seeds (characteristic points) usually specified by a level designer as part of
the level data
connections between bordering domains

Regions can be also left to define to
the designer or cone representation
and point of view.
weighted Dirichlet domain: each point
has an associated weight value that
controls the size of its region.

Quantization and Localization
find closest seed: use some kind of spatial partitioning data structure (ex
kd-trees, as quad-tree, octree, binary space partition, or multi-resolution map)

Validity
may lead to invalid paths. Leave Obstacle and Wall Avoidance on.

32

Pathfinding
Heuristics
World RerpresentationsPoints of Visibility

Inflection points: points on the path where the direction changes, may not be
feasible for the character due to collision. Need to be moved.
Division scheme:
inflection points: Look at level
geometry (maybe costly) or generate
specially.
connection is made if the ray doesn’t
collide with any other geometry

Quantization:
Points of visibility are usually taken to
represent the centers of Dirichlet
domains

33

Pathfinding
Heuristics
World RerpresentationsNavigation Meshes

Navmesh: Designer specifies the way the level is connected and the regions it
has by defining the graphical structure made up of polygons connected to
other polygons.
Division scheme:
floor polygons are nodes
connections if polygons share an edge

Quantization and Localization:
Coherence refers to the fact that, if we
know which location a character was
in at the previous frame, it is likely to
be in the same node or an immediate
neighbor on the next frame. Check
first these nodes. (note, polygons
must be convex)

Validity:
Not always guaranteed

34

Pathfinding
Heuristics
World Rerpresentations

Alternative division scheme: polygon-as-node vs edge-as-node
nodes on the edges between polygons and connections across the face of each
polygon.
used in association with portal-based rendering, where nodes are assigned to
portals and connections link portals on the same (convex) polygon.

Nodes may move on the edge.

35

Pathfinding
Heuristics
World RerpresentationsOther Issues

Non-translational problems: nodes may indicate not only positions but
also orientations

Cost maybe more than simple distance

Different cost functions for different characters (tactical pathfinding)

Erratic paths
portal representations with points of visibility tend to give smooth paths
tile-based graphs tend to be erratic.
steering behaviours can take care of this.

36

Pathfinding
Heuristics
World RerpresentationsPath smoothing

def smoothPath(inputPath):
if len(inputPath) == 2: return inputPath
outputPath = [inputPath[0]]
We start at 2, because we assume two adjacent
nodes will pass the ray cast
inputIndex = 2
while inputIndex < len(inputPath)-1:
if not rayClear(outputPath[len(outputPath)-1],
inputPath[inputIndex]):
outputPath += inputPath[inputIndex-1]

inputIndex ++
outputPath += inputPath[len(inputPath)-1]
return outputPath

Note: output is a list of nodes that are in line of sight but among which we
may have no connection

37

Pathfinding
Heuristics
World RerpresentationsHierarchical Pathfinding

multi-level plan: plan an overview route first and then refine it as needed.

we only need to plan the next part of the route when we complete a
previous section.

grouping locations together to form clusters.

edges between clusters that are connected.

costs not trivial: heuristics: minimum distance, maximum distance,
average minimum distance

38

Pathfinding
Heuristics
World Rerpresentations

Further speed-up:
Consider only nodes that are within the group that is part of the path.

39

	Pathfinding
	Heuristics
	World Rerpresentations

