
DM810

Computer Game Programming II: AI

Lecture 8
Decision Making

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

State Machine
Behavior TreesResume

Hierarchical Pathfinding

A∗ variants

Decision Making

Decision Trees

2

State Machine
Behavior TreesOutline

1. State Machine

2. Behavior Trees

3

State Machine
Behavior TreesOutline

1. State Machine

2. Behavior Trees

4

State Machine
Behavior TreesFinite State Machines

An FSM is an algorithm used for parsing text, eg, tokenize the input code
into symbols that can be interpreted by the compiler.

States: actions or behaviors. Chars are in exactly one of them @ any time.

Transitions: a set of associated conditions, if they are met the char
changes state

Initial state for the first frame the state machine is run

In a decision tree, the same set of decisions is always used, and any action
can be reached through the tree.
In a state machine, only transitions from the current state are considered, so
not every action can be reached.

5

State Machine
Behavior TreesGeneral State Machines

set of possible states

current state

set of transitions

at each iteration (normally each frame), the state machine’s update
function is called.

checks if any transition from the current state is triggered

the first transition that is triggered is scheduled to fire
(some actions related to transition are executed)

6

State Machine
Behavior TreesImplementation

class StateMachine:
states # list of states for the machine
initialState
currentState = initialState
def update(): # checks and applies
triggeredTransition = None
for transition in currentState.getTransitions():
if transition.isTriggered():

triggeredTransition = transition
break

if triggeredTransition:
targetState = triggeredTransition.getTargetState()
actions = currentState.getExitAction()
actions += triggeredTransition.getAction()
actions += targetState.getEntryAction()
currentState = targetState
return actions

else: return currentState.getAction()

7

State Machine
Behavior Trees

class MyFSM:
enum State:
PATROL
DEFEND
SLEEP

myState # holds current state

transition by polling (asking for information explicitly)
def update():
if myState == PATROL:
if canSeePlayer(): myState = DEFEND # access to game state data
if tired(): myState = SLEEP # access to game state data

elif myState == DEFEND:
if not canSeePlayer(): myState = PATROL

elif myState == SLEEP:
if not tired(): myState = PATROL

transition in an event−based approach (waiting to be told information)
def notifyNoiseHeard(volume):
if myState == SLEEP and volume > 10:
myState = DEFEND

def getAction():
if myState == PATROL: return PatrolAction
elif myState == DEFEND: return DefendAction
elif myState == SLEEP: return SleepAction

State machines implemented like this can often get large and code unclear
8

State Machine
Behavior Trees

class State:
def getAction()
def getEntryAction()
def getExitAction()
def getTransitions()

class Transition:
actions
def getAction(): return actions
targetState
def getTargetState(): return targetState
condition
def isTriggered(): return condition.test()

Often defined in a data file and read into the game at runtime.
Do not allow to compose questions easily.
Requires condition interface.

class Condition:
def test()

class FloatCondition (Condition):
minValue
maxValue
testValue # ptr to game data
def test():
return minValue <= testValue

<= maxValue

class AndCondition (Condition):
conditionA
conditionB
def test():
return conditionA.test() and conditionB.test()

class NotCondition (Condition):
condition
def test(): return not condition.test()

class OrCondition (Condition):
conditionA
conditionB
def test():
return conditionA.test() or conditionB.test()

9

State Machine
Behavior TreesHierarchical State Machines

Alarm mechanism: something that interrupts normal behavior to
respond to something important.

Representing this in a state machine leads to a doubling in the number
of states.

Instead: each alarm mechanism has its own state machine, along with
the original behavior.

We can add transitions between layers of machines

10

State Machine
Behavior TreesImplementation

In a hierarchical state machine, each state can be a complete state machine
in its own right recursive algorithm

A triggered transition may be: (i) to another state at current level, (ii) to a
state higher up, or (iii) to a lower state

11

State Machine
Behavior TreesExample

start in State L

from H* transition to A
update = [L-active, A-entry]
current State [L, A]

top-level state machine no valid transitions
state machine L: current state [A], triggered transition 1 stay at current level,
transition to B, update = [A-exit, 1-actions, B-entry]
top-level state machine accepts and adds L-active. current State [L, B].

top level machine: triggered transition 4
transition to State M, update = [L-exit, 4-actions, M-entry].
current State is [M]. (state machine L still keeps State B)

top level machine: triggered transition 5
transition to State N, update = [M-exit, 5-actions, N-entry]. current State N

top level machine: triggered transition 6
transitions to State L, update = [N-exit, 6-actions, L-entry].
state machine L has current state still State [L, B] no B-entry action 12

State Machine
Behavior Trees

top-level state machine no transition; State [L, B] triggered transition 3.
top-level state machine no triggers state machine L: B, transition has one level up
update: B-exit
top-level machine: transition to State N; update += [L-exit, 3-actions, N-entry]

State N → transition 7 → State M
...

top level machine: triggered transition 2. top-level state machine: transition down
updateDown. state machine L: update = C-enter
top-level state machine changes from State M to State L, update += [M-exit,
L-entry, 2-actions]

13

State Machine
Behavior TreesImplementation

class HSMBase:
struct UpdateResult:
actions
transition
level
def getAction(): return []
def update():
UpdateResult result
result.actions = getAction()
result.transition = None
result.level = 0
return result

def getStates()

class State (HSMBase):
def getStates():
return [this]

def getAction()
def getEntryAction()
def getExitAction()
def getTransitions()

class Transition:
def getLevel()
def isTriggered()
def getTargetState()
def getAction()

class HierarchicalStateMachine (HSMBase):
states # List of states at this level
initialState # when no current state
currentState = initialState
def getStates():
if currentState: return currentState.getStates()
else: return []

def update(): ...
def updateDown(state, level): ...

class SubMachineState (State,HierarchicStateMachine):
def getAction(): return State::getAction()
def update(): return HierarchicalStateMachine::

update()
def getStates():
if currentState:
return [this] + currentState.getStates()

else:
return [this]

14

State Machine
Behavior Trees

class HierarchicalStateMachine (HSMBase):
states # List of states at this level
initialState # when no current state
currentState = initialState
def getStates():
if currentState: return currentState.getStates()
else: return []

def update():
if not currentState:
currentState = initialState
return currentState.getEntryAction()

triggeredTransition = None
for transition in currentState.getTransitions():
if transition.isTriggered():
triggeredTransition = transition
break

if triggeredTransition:
result = UpdateResult()
result.actions = []
result.transition = triggeredTransition
result.level = triggeredTransition.getLevel()

else:
result = currentState.update() # rcrs.

15

State Machine
Behavior Trees

if result.transition:
if result.level == 0: # Its on this level: honor it
targetState = result.transition.getTargetState()
result.actions += currentState.getExitAction()
result.actions += result.transition.getAction()
result.actions += targetState.getEntryAction()
currentState = targetState
result.actions += getAction()
result.transition = None # so nobody else does it

else if result.level > 0: # it is for a higher level
result.actions += currentState.getExitAction()
currentState = None
result.level -= 1

else: # It needs to be passed down
targetState = result.transition.getTargetState()
targetMachine = targetState.parent
result.actions += result.transition.getAction()
result.actions += targetMachine.updateDown(targetState,-result.level) #

recursion
result.transition = None # so nobody else does it

else: # no transition
result.action += getAction()

return result

16

State Machine
Behavior Trees

def updateDown(state, level):
if level > 0: # continue recursing
actions = parent.updateDown(this, level-1)

else: actions = []
if currentState:
actions += currentState.getExitAction()

currentState = state # move to the new state
actions += state.getEntryAction()
return actions

17

State Machine
Behavior TreesCombining DT and SM

Decision trees can be used to implement more complex transitions

18

State Machine
Behavior TreesOutline

1. State Machine

2. Behavior Trees

19

State Machine
Behavior TreesBehavior Trees

synthesis of: Hierarchical State Machines, Scheduling, Planning, and
Action Execution.

state: task composed of sub-trees

tasks are Conditions, Actions, Composites

tasks return true, false, error, need more time

Actions: animation, character movement, change the internal state of
the character, play audio samples, engage the player in dialog,
pathfinding.

Conditions are logical conditions

behavior trees are coupled with a graphical user interface (GUI) to edit
the trees.

20

State Machine
Behavior Trees

Both Conditions and Actions sit at the leaf nodes of the tree. Branches
are made up of Composite nodes.

Composites: two main types: Selector and Sequence

Both run each of their child behaviors in turn and decide whether to
continue through its children or to stop according to the returned value.

Selector returns immediately with a success when one of
its children succeeds. As long as children are failing, it
keeps on trying. If no children left, returns failure.
(used to choose the first of a set of possible actions that
is successful) Eg: a character wanting to reach safety.

Sequence returns immediately with a failure when one of
its children fails. As long as children are succeeding, it
keeps on trying. If no children left, returns success.
(series of tasks that need to be undertaken)

21

State Machine
Behavior TreesDeveloping Behaviour Trees

get something very simple to work initially

Condition task in a Sequence acts like an IF-statement.
If the Sequence is placed within a Selector, then it acts like an
IF-ELSE-statement

22

State Machine
Behavior Trees

23

State Machine
Behavior Trees

behaviour trees implement a sort of reactive planning. Selectors allow
the character to try things, and fall back to other behaviors if they fail.
(look ahead only via actions)

depth-first search

could be written as state machines or decision trees but more
complicated

24

State Machine
Behavior TreesImplementation

class Task:
children
def run() # true/false

class Selector (Task):
def run():
for c in children:
if c.run():
return True

return False

class Sequence (Task):
def run():
for c in children:
if not c.run():
return False

return True

class EnemyNear (Task):
def run():
if distanceToEnemy < 10:
return True

return False

class PlayAnimation (Task):
animation_id
speed
def Attack(animation_id, loop=False,

speed=1.0):
this.animation = animation
this.speed = speed
def run():
if animationEngine.ready(): #

resource checking
animationEngine.play(animation,

speed)
return True

return False

25

State Machine
Behavior TreesNon-Deterministic Composite Tasks

In some cases, always trying the same things in the same order can lead
to predictable AIs.

Selectors: eg, if altrnative ways to enter the door, no relevant the order

Sequences: eg, collect components, no relevant the order “partial-order”
constraints in the AI literature. Some

parts may be strictly ordered, and others can be processed in any order.

class NonDeterministicSelector (Task):
children
def run():
shuffled = random.shuffle(children)
for child in shuffled:
if child.run(): break

return result

class NonDeterministicSequence (Task):
children
def run():
shuffled = random.shuffle(children)
for child in shuffled:
if not child.run(): break

return result

26

State Machine
Behavior TreesShuffle

by Richard Durstenfeld in 1964 in Communications of the ACM, volume 7,
issue 7, as "Algorithm 235: Random permutation", and by Donald E. Knuth
in volume 2 of his book The Art of Computer Programming as "Algorithm
P" but originally by Fisher and Yates.

def shuffle(original):
list = original.copy()
n = list.length
while n > 1:
k = random.integer_less_than(n)
n--;
tmp = list[k], list[k] = list[n], list[n] = tmp

return list

27

State Machine
Behavior Trees

28

	State Machine
	Behavior Trees

