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Note 1 The project is carried out individually and it is not permitted to collaborate. It
consists of: algorithm design, implementation, experimentation and written report.

The evaluation of the project is based on the report. However, a program that imple-
ments the best algorithm described in the report must also be submitted. The program will
serve to verify the correctness of the results presented. The report may be written in either
English or Danish.

Note 2 Corrections or updates to the project description will be published on the course
web page and will be announced by email to the addresses available in the Blackboard
system. In any case, it remains students’ responsibility to check for updates on the web
page.

Note 3 Submission. An archive containing the electronic version of the written report and
the source code of the program must be handed in through the Blackboard system before
15:00 of Monday, April 19th, 2010. This is the procedure:

- choose the course DM811 in Blackboard,

- choose ”Exam Project Hand in” in the menu on the left,

- fill the form and conclude with submit,

- print the receipt (there will be a receipt also per email).

See Appendix C for details on how to organize the electronic archive. Reports and codes
handed in after the deadline will generally not be accepted. System failures, illness, etc. will
not automatically give extra time.

1 Problem Description

The project consists in solving the Minimum Rainbow Subgraph Problem by means of
heuristics. This problem arises in the context of bioinformatics as described in the following.

1.1 The biological problem

A single nucleotide polymorphism (SNP, pronounced “snip”) is a site of the human genome
(i.e., the position of a specific nucleotide) showing a statistically significant variability within
a population. Besides very rare exceptions, at each SNP site only two nucleotides (out of A,
T, C, and G) are observed, and they are called the SNP alleles.

Humans are diploid organisms; i.e., their DNA is organized in pairs of chromosomes.
For each pair of chromosomes, one chromosome copy is inherited from the father and the
other copy is inherited from the mother. For a given SNP, an individual can be either
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Figure 1: The Haplotypes of Three Individuals, with Four SNPs.

homozygous (i.e., possessing the same allele on both chromosomes) or heterozygous (i.e.,
possessing two different alleles). The values of a set of SNPs on a particular chromosome
copy define a haplotype.

In Figure 1, it is illustrated a simplistic example of three individuals and four SNPs. The
alleles for SNP 1, in this example, are C and G. Individual 1, in this example, is heterozygous
for SNPs 1, 2, and 3, and homozygous for SNP 4. His haplotypes are CCCT and GAGT.

SNPs are the predominant form of differences of human genomes. For this reason they
are widely used in therapeutic, diagnostic and forensic applications.

Haplotyping, that is, determining the two haplotypes of a given chromosome for an
individual is infeasible by experimental way, because it is not possible to examine the two
copies of the chromosome separately. Instead, haplotypes are retrieved computationally by
means of the less-informative genotypes that can be easily obtained from experiments.

A genotype provides information about the multiplicity of each SNP allele: i.e., for each
SNP site, the genotype specifies if the individual is heterozygous or homozygous (in the
latter case, it also specifies the allele). Heterozygous sites cause ambiguity in the retrieval of
the haplotypes, because one has to decide how to distribute the two allele values on the two
chromosome copies. Resolving a genotype requires to determine two haplotypes such that,
if they are assumed to be the two chromosome copies, then the multiplicity of each SNP
allele yields exactly that genotype. Note that for a genotype with k heterozygous sites, there
are 2k−1 pairs of distinct haplotypes that could resolve the genotype. For example, for the
genotype (0212) there are two possible pairs of haplotypes that resolve it: {(0110), (0011)}
and {(0010), (0111)}.

Given a set of genotypes, the Haplotype Inference problem asks to determine the set of
haplotype pairs such that all genotypes are resolved. Since there is an exponential number
of possible haplotypes for each genotype, a criterion to discriminate among the possible
solutions is needed. One of the possible criteria is the pure parsimony criterion that seems
consistent with observations in nature. This criterion chooses among the possible resolving
sets of haplotypes the one of minimal size.

The Pure Parsimony Haplotyping Problem has been shown by Earl Hubbel to be
NP-hard [Gus03].

More formally, given a set of n SNPs, let’s arbitrarily fix a binary encoding of the two
alleles for each SNP (i.e., call one of the two alleles “0” and the other “1”). Once the
encoding has been fixed, each haplotype corresponds to a binary vector of length n. For a
haplotype h, we denote by hi the value of its ith component, with i = 1, . . . , n. Under this
encoding of the alleles, the two haplotypes of individual 1 in Figure 1 could be represented
as binary vectors (0, 0, 0, 1) and (1, 1, 1, 1).

Given two haplotypes h′ and h′′, their sum is a vector h′ ⊕ h′′ , where the binary opera-
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G = {(0221), (0011), (2102), (2220)}

Haplotype 1, paternal: 0101

0221 Genotype 1

Haplotype 1, maternal: 0011

Haplotype 2, paternal: 0011

0011 Genotype 1

Haplotype 2, maternal: 0011

Haplotype 3, paternal: 0101

2102 Genotype 1

Haplotype 3, maternal: 1100

Haplotype 4, paternal: 1100

2220 Genotype 1

Haplotype 4, maternal: 0010

H = {(0101), (0011), (1100), (0010)}

Figure 2: Input G and output H for the Pure Parsimony Haplotyping Problem.

tor ⊕ is defined, component-wise, as

(h′ ⊕ h′′)i :=


0 if h′i = h′′i = 1
1 if h′i = h′′i = 1
2 if h′i 6= h′′i

for i = 1, . . . , n

A vector g = h′ ⊕ h′′ is called a genotype. In general, we call a genotype any vector
g ∈ {0, 1, 2}n and each position i such that gi = 2 an ambiguous position.

For g, a genotype, a pair of haplotypes h′, h′′ such that g = h′ ⊕ h′′ is a resolution of g.
The haplotypes h′ and h′′ are said to resolve g. Let G be a set of genotypes and H be a set
of haplotypes such that each g has a resolution in H. Then H resolves G and is called a
resolving set for G.

The parsimony haplotyping problem is formally defined as follows:

Definition 1 (Pure Parsimony Haplotyping Problem).
INPUT: A set G of p genotypes of length n each.
TASK: Find a resolving set Ĥ for G of minimum cardinality.

We denote this problem by PPHP.

1.2 The graph problem

The Pure Parsimony Haplotyping problem can be transformed in the following graph prob-
lem [CST10].

Definition 2 (Minimum Rainbow Subgraph Problem). Given a graph G, whose edges are
colored with p colors, find a subgraph F ⊆ G of G of minimum order and with p edges such that
each color occurs exactly once.

We denote this problem by MRSP.
The transformation from PPHP to MRSP works as follows. For a set G of p genotypes

g1, g2, . . . , gp let us use p colors 1, 2, . . . , p. For each haplotype let us introduce a vertex. If
two haplotypes h′ and h′′ explain a genotype gl , l ∈ {1, . . . , p}, that is, gl = h′ ⊕ h′′, then
the corresponding vertices will be joined by an edge that receives color l. If a genotype is
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#genotypes
11002
22002
22221

#haplotypes
01111 01000
10111 10000
00101 10011
01101 01001
11101 11011
10101 01011
00111 11001
11111 00011
10001 00000
00001 11000

Figure 3: The small demo example. On the left the input data. On the right the correspond-
ing rainbow graph.

explained by two identical haplotypes, then the corresponding vertex is joined by an edge
which is called a loop. In this way we construct a graph G, whose edges are colored with p
colors. Note that this is a proper edge coloring (no vertex is incident with two edges of the
same color), since a haplotype h can be used at most once in a pair of haplotypes, which
explains a genotype g. In this setting, every setH of haplotypes that explains G corresponds
to a rainbow subgraph F of G.

An example is illustrated in Figure 3. On the left we have the set G of genotypes and
a set H of 20 haplotypes resolving G. The haplotypes are identified by numbers from 0 to
19 and form the set V of vertices in the rainbow graph on the left. The genotypes form the
edges and the colors 1, 2, 3 that we represent on the edges by using different line style. Any
set of edges including exactly 3 colors determines a subset of H that is a resolving set. The
set of haplotypes {6, 15, 17, 18} is the resolving set of minimal cardinality.

1.3 Instances

The instances of the PPHP are simulated data generated with the program ms by Hudson
(2002) [Hud02] following the indications of Lancia and Rizzi [LS09].

Summary statistics relative to the 10 instances generated are reported in Table 1.

2 Project Requirements

The aim of the project is to study efficient heuristic algorithms for solving the 10 test in-
stances of the PPHP defined above after having transformed them in MRSP instances.

All the following points must be addressed to pass the exam:

1. Implement the procedure RandomRainbowSubset of Figure 4 to generate random
solutions.

2. Design and implement one or more construction heuristics that perform better than
RandomRainbowSubset.

3. Design and implement one or more local search algorithms.
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Instance |G| |H| min{|S2|} av{|S2|} max{|S2|}
01 67 62817 1 7 15

02 68 338294 2 9 16

03 55 172349 1 9 16

04 59 5321333 1 11 21

05 66 2937915 1 10 20

06 62 1665986 2 10 19

07 61 869377 1 9 18

08 64 98735 1 7 15

09 62 271437 1 8 17

10 63 840233 2 11 18

Table 1: The first column reports the number of genotypes, the second the number of
compatible haplotypes (a haplotype h is compatible if it has at least one genotype g in G
such that hi = gi whenever gi 6= hi); the third column indicates the number of ambiguous
solutions.

function RandomRainbowSubset(π)1

input an instance π of Minimum Rainbow Subgraph Problem;2

output a rainbow subgraph;3

for c in 1, . . . , p do4

choose uniformly at random an edge from the set of edges available with color c.5

return (the set of vertices incident to the selected edges);6

Figure 4: Procedure to generate a random rainbow sets.

4. Design and implement an effective algorithm enhancing the heuristics at the previous
two points with the use of stochastic local search methods and metaheuristics.

5. For all the methods above carry out an experimental analysis and draw sound con-
clusions.

6. For the best algorithm devised in point 4, determine experimentally whether the initial
solution should be a good solution provided by a construction heuristic devised in
point 2 or whether the use of RandomRainbowSubset would lead to equally good
(or possibly better) final results.

In the experimental assessment all algorithms should be given a maximum time per run
of 30 seconds on each single instance.1

3 Remarks

Remark 1 For each point above a description of the work undertaken must be provided
in the report. In particular for the best algorithms arising from the experimental analysis
the amount of details provided must guarantee the reproducibility of the algorithm from
the report only (i.e., without having to look at the source code).

Remark 2 The results of the experiments must be reported either in graphical form or in
form of tables. Moreover, for the best solver resulting from the point 4, a table must be

1Times refer to machines in IMADA terminal room.
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provided with the best results for each specific instance of Table 1.

Remark 3 The total length of the report should not be less than 8 pages and not be more
than 14 pages, appendix included (lengths apply to font size of 11pt and 3cm margins). Al-
though these bounds are not strict, their violation is highly discouraged. In the description
of the algorithms, it is allowed (and encouraged) to use short algorithmic sketches in form
of pseudo-code but not to include program codes.

Remark 4 This is a list of factors that will be taken into account in the evaluation:

• quality of the final results;

• level of detail of the study;

• complexity and originality of the approaches chosen;

• presence of computational considerations (ie, asymptotic complexity analysis) for the
main procedures designed;

• organization of experiments which guarantee reproducibility of conclusions;

• clarity of the report;

• effective use of graphics in the presentation of experimental results.
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Appendix A Instance Format

Input data for each instance of PPHP are given in two text file. A file called haplotypes-s
consists of a binary string per line indicating the haplotypes. Another file called genotypes-s
reports the strings of elements {0, 1, 2} representing the genotypes.

Appendix B Solution Format

In order to check the validity of the results reported, the program submitted must output
when finishing the best solution found during its execution in a file called parsimonys.sln.
The file must be in text format and contain the selected haplotypes in the same format
as in the file haplotypes-s.txt. Thus, the number of lines of the solution file gives the
cardinality of the resolving set.

Appendix C Handing in Electronically

The electronic archive to hand in must be organized as follows. It expands in a main
directory named with the first 6 digits of your CPR number (e.g., 030907). The directory
has the following content:

CPRN/README
CPRN/report/
CPRN/src/

The directory report contains a pdf or postscript version of your report. Do not put your
name in the author field of the report, instead put your CPR number. The file README provides
instructions for compilation of the program. The directory src contains the sources which
may be in C, C++, Java or other languages. If needed a Makefile can be included either in
the root directory or in src. After compilation the executable must be placed in src. For
java programs, a jar package can also be submitted.

Programs must work on IMADA’s computers under Linux environment and with the
compilers and other applications present on IMADA’s computers. Students are free to
develop their program at home, but it is their own responsibility to transfer the program to
IMADA’s system and make the necessary adjustments such that it works at IMADA.2

The executable must be called mrsp. It must execute from command line by typing in
the directory CPRN/src/:

mrsp -i INSTANCE -t TIME -s SEED -o OUTPUT

where the flags indicate:

• -i INSTANCE the input instance;

• -t TIME the time limit in seconds;

• -s SEED the random seed;

• -o OUTPUT the file name where the solution is written.

For example:

2Past issue: the java compiler path is /usr/local/bin/javac; in C, any routine that uses subroutines from
the math.c library should be compiled with the -lm flag – eg, cc floor.c -lm.
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mrsp -i Inst/01.txt -o 01.sln -t 180 -s 1 > mrsp-01.log

will run the program on the input files of the instance 01.txt opportunely retrieved from
the given path for 180 seconds with random seed 1 and write the solution in the file 01.sln.

In its default mode, the program must run the best algorithm developed and must print
on the standard output only one single number at the end of the run corresponding to the
quality of the best solution found during the run.

It is advisable to have a log of algorithm activities during the run. This can be achieved
by printing further information on the standard error or in a file. A suggested format is to
output a line whenever a new best solution is found containing at least the following pieces
of information:

best 853 time 10.000000 iter 1000

All process times are the sum of user and system CPU time spent during the execution
of a program as returned by the linux C library routine getrusage. Process times include
the time to read the instance.
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