DM811 — Autumn 2012

Heuristics for Combinatorial Optimization

Lecture 1
Course Introduction
Combinatorial Optimization and Modeling

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Course Introduction

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

3. Exercise
4. Problem Solving

5. Modelling and Search
IP-models
CP-models
Modeling for Heuristics
Search

6. Summary

Outline

1. Course Introduction

Schedule and Material

o Schedule (28 lecture hours):

Monday 12:15-14:00

Tuesday 08:15-10:00

Thursday 10.15-12:00

Last lecture: Thursday, October 11, 2012

o Communication tools
o Course Public Webpage (WWW) < BlackBoard (BB)
(link from http://www.imada.sdu.dk/ marco/DM811/)
o Announcements in BlackBoard
o Course Documents (Literature) in (BB)
o Discussion Board in (BB)
o Personal email

http://www.imada.sdu.dk/~marco/DM811/

Contents

Heuristic algorithms: compute, efficiently, good solutions to a problem with
no guarantee of optimality.

Terminology
Components and Definitions
Search Landscape Analysis

Lin-Kerninghan for TS7

Kerninghan-Lin for GF
Neighborhood Pruning

Incremental updates

Static data
Data Structures

Oynamic data [—————————

Rollout

Beam Search
Iterated Greedy |
GRASP

Adaptive Iterated Construction Search

tree search

Squeaky wheel

Multilevel refinemen

Problem Specific

Random Walk SAT & Min-conflict Heuristic
iterated local search

tabu search |- |08l search

simulated annealing

variable neighborhood searct

Very large scale

Efficient Local Search

el
stochastic local search

Ve
(_Content

Metaheuristict

Local searc J\ /
AN/

J \\

Problems

Tree searcl

Basic concepts from
algorithmics (Repetition] | Asymptotic analysis

Exprimental Analysi:

Routing - _travelling salesmar
graph coloring (GcP)

B | _Propositional Satisfiablity (SAT and MAX ST
ssignment

Constraint Satisfaction Problem (CSP and MAX-CSP)

Bin Packing and 2-

mensional Bin Packin
Max Independent Set

Subset | Set Covering, Packing, Partitioning

h

Sequencing - Scheduling

ar:

oning

Computational Complexity

Philosophical grunding

Empirical Cumulative Distribution
Boxplots

scatter plots

performance Indicators

Data Visualization

Experimental enviranment set u

Tuning - Race Method

Complete Incomplete
A* search
Greedy
Bounded backtrack

redit based search

Barrier search

Evaluation

o Obligatory Assignments, pass/fail, evaluation by teacher (341 handins)

o Evaluation: final individual project, 7-grade scale, external examiner)
o Algorithm design

Implementation (deliverable and checkable source code)

(Analytical) and experimental analysis

Written description

Performance counts

References

Main References:

(]

B1 W. Michiels, E. Aarts and J. Korst. Theoretical Aspects of Local Search.
Springer Berlin Heidelberg, 2007

B5 H. Hoos and T. Stuetzle, Stochastic Local Search: Foundations and
Applications, 2005, Morgan Kaufmann

Literature Collection (from Course Documents left menu of BlackBoard)
R notes from the Webpage
Lecture slides

® 6 o o

Assignments and Exercises

...and take notes in class!

(]

Active participation

Practical experience is important to learn to develop heuristics
Implementation details play an important role.

@ Be prepared for:

o Problem solving in class

o Assignments for hands on experience ~~ programming
o Experimental analysis of performance

o Group discussions

Exercise Sheets

Require home preparation!

Former students’ feedback (1/2)

On the course:

@ the course bulids on a lot of knowledge from previous courses
@ programming

@ practical drive

@ taught on examples

@ no sharp rules are given and hence more space left to creativity
@ unexpected heavy workload

@ the assignments are really an important preparation to the final projects

10

Word cloud

fu me
outsn:ie beyond dlfferent qutte learn

used content problem just
many specific exam-project waycreative norm%lv ol
requires gain Pr re theories
skiis_teansrorme WOrkload chare definitely,

approaches learning

knowledge seems
ECTS expect something tl m e O previous
Fortunatelg challenging EDean ngcm

D grammmg‘”w‘*%‘g

hardest things optimization
complicated eaV COdlng maKES interested DM811t& examples

need
problems ldeas qualifiedoptimizations self Dassmg
take alSO ne good understand otherwise

first Otherwise want confused
box connectlons nd general relevant However
HerMOLaLe takes know set

future taught fc&{g)wetiu]gs

11

Former students’ feedback (2/2)

On the exam:
@ hardest part is the design of the heuristics
the content of the course is vast ~» many possibilities without clue on
what will work best.
In general:
@ Hands-on examples are relevant, would be nice closer look at source
code.
From my side, mistakes | would like to see avoided:

@ non competitive local search procedures and mistaken data aggregation
in instance set analysis.

12

Outline

2. Combinatorial Optimization
Combinatorial Problems
Solution Methods

13

Combinatorial Problems (1/6)

Combinatorial problems

They arise in many areas

of Computer Science, Artificial Intelligence and Operations Research:
allocating register memory

planning, scheduling, timetabling

Internet data packet routing

protein structure prediction

combinatorial auctions winner determination

portfolio selection

15

Combinatorial Problems (2/6)

Simplified models are often used to formalize real life problems
o coloring graphs (GCP)
o finding models of propositional formulae (SAT)
o finding variable assignment which satisfy constraints (CSP)
o finding shortest/cheapest round trips (TSP)
@ partitioning graphs or digraphs
@ partitioning, packing, covering sets
o finding the order of arcs with minimal backward cost

16

Example Problems

@ They are chosen because conceptually concise, intended to illustrate the
development, analysis and presentation of algorithms

o Although real-world problems tend to have much more complex
formulations, these problems capture their essence

17

Combinatorial Problems (3/6)

Combinatorial problems are characterized by an input,

i.e., a general description of conditions (or constraints) and parameters,
and a question (or task, or objective) defining

the properties of a solution.

They involve finding a grouping, ordering, or assignment
of a discrete, finite set of objects that satisfies given conditions.

Note:
in this course, (candidate) solutions are combinations of objects or solution
components that need not satisfy all given conditions.

Solutions are candidate solutions that satisfy all given conditions.

18

Combinatorial Problems (4/6)

Examples

Grouping:

Given a finite set N = {1,...,n}, weights ¢, for each j € N, and a set F of
feasible subsets of /V, find a minium weight feasible subset of N, ie,

min{} ¢; | S €F}

- jes

o candidate solution: one of the 2!/V! possible subsets of V.

o solution: the feasible subset of minimal cost

19

Combinatorial Problems (5/6)

Ordering

Ordering:

Traveling Salesman Problem
o Given: edge-weighted, undirected complete graph ¢
o Task: find a minimum-weight Hamiltonian cycle in G.

o candidate solution: one of the (n — 1)! possible sequences of points to
visit one directly after the other.

o solution: Hamiltonian cycle of minimal length

20

Decision problems

Hamiltonian cycle problem
o Given: undirected graph G

@ Question: does & contain a Hamiltonian cycle?

solutions = candidate solutions that satisfy given logical conditions

Two variants:

o Existence variant: Determine whether solutions
for given problem instance exists

@ Search variant: Find a solution for given problem instance
(or determine that no solution exists)

21

Optimization problems

Traveling Salesman Problem
o Given: edge-weighted, undirected complete graph ¢
o Task: find a minimum-weight Hamiltonian cycle in G.

@ objective function measures solution quality
(often defined on all candidate solutions)

o find solution with optimal quality, i.e., minimize/maximize obj. func.

Variants of optimization problems:

o Evaluation variant: Determine optimal objective function
value for given problem instance

@ Search variant: Find a solution with optimal
objective function value for given problem instance

22

Remarks

(]

Every optimization problem has an associated decision problem:
Given a problem instance and a fixed solution quality bound b,
find a solution with objective function value < b (for minimization
problems) or determine that no such solution exists.

Many optimization problems have an objective function
as well as constraints (= logical conditions) that solutions must satisfy.

A candidate solution is called feasible (or valid) iff it satisfies
the given constraints.

Approximate solutions are feasible candidate solutions that are not
optimal.

Note: Logical conditions can always be captured by

an objective function such that feasible candidate solutions
correspond to solutions of an associated decision problem
with a specific bound.

23

Combinatorial Problems (6/6)

General problem vs problem instance:

General problem II:
o Given any set of points X in a square, find a shortest Hamiltonian cycle

o Solution: Algorithm that finds shortest Hamiltonian cycle for any X

Problem instantiation = = II(7):

@ Given a specific set of points I in the square, find a shortest Hamiltonian
cycle

@ Solution: Shortest Hamiltonian cycle for I

Problems can be formalized on sets of problem instances 7 (instance classes)

24

Traveling Salesman Problem

Types of TSP instances:
@ Symmetric: For all edges uv of the given graph G, vu is also in G, and
w(uv) = w(vu).
Otherwise: asymmetric.
o Euclidean: Vertices = points in an Euclidean space,
weight function = Euclidean distance metric.

@ Geographic: Vertices = points on a sphere,
weight function = geographic (great circle) distance.

25

TSP: Benchmark Instances

Instance classes
o Real-life applications (geographic, VLSI)
o Random Euclidean
@ Random Clustered Euclidean
@ Random Distance

Available at the TSPLIB (more than 100 instances upto 85.900 cities)
and at the 8th DIMACS challenge

26

TSP: Instance Examples

T g HHWM B
e e W%m E WHW B e s Av— ——
by g e e sttt et
.
i Freeeee B s +%H~H*~H+++++M—H—+H - R
!
i Wﬂn T Mgt e mﬂﬂrm M
k pos JE
HWM gty H%Hiw g
1t
i—H~H—H—¢+ g +0—0—N+ e *++HA+H

. mw RN L1
¥ " -
: W@%mw Foe sy MWHWH
T + it
N L H, +WH¢+HM+H+¢ +% 1t A
" .
%ﬂ b et s e g
b ¢ o ——
——
TR S ettt L
N : o
[B s
S e g’ w
+ g ety e ol % hdd “
- L bt et s s+ e NI ot —— e——

? *"%* Qﬁ» Y
“yu

4,
,+

E Ty
5 Wy P *

E &ﬁ

: wz @
% %

N
L *

"

A

)

27

Methods and Algorithms

A Method is a general framework for the development of a solution
algorithm. It is not problem-specific.

An Algorithm (or algorithmic model) is a problem-specific template that
leaves only some practical details unspecified.
The level of detail may vary:

o minimally instantiated (few details, algorithm template)
lowly instantiated (which data structure to use)

highly instantiated (programming tricks that give speedups)

e o6 o

maximally instantiated (details specific of a programming language and
computer architecture)

A Program is the formulation of an algorithm in a programming language.

An algorithm can thus be regarded as a class of computer programs
(its implementations)

29

Solution Methods

o Exact methods (complete)
guaranteed to find (optimal) solution,
or to determine that no solution exists (eg, systematic enumeration)
o Search algorithms (backtracking, branch and bound)
o Dynamic programming
o Constraint programming
o Integer programming
o Dedicated Algorithms

o Approximation methods
worst-case solution guarantee
http://www.nada.kth.se/“viggo/problemlist/compendium.html

o Heuristic (Approximate) methods (incomplete)
not guaranteed to find (optimal) solution,
and unable to prove that no solution exists

30

http://www.nada.kth.se/~viggo/problemlist/compendium.html

Problem specific methods:

@ Dynamic programming (knapsack)

o Dedicated algorithms (shortest path)

General methods:
@ Integer Programming

o Constraint Programming

Generic methods:
I'= Allow to save development time

= Do not achieve same performance as specific algorithms

31

Outline

3. Exercise

32

The Vertex Coloring Problem

Given: A graph (G and a set of colors T

A proper coloring is an assignment of one color to each vertex of the graph
such that adjacent vertices receive different colors.

Decision version (k-coloring)

Task: Find a proper coloring of G that uses at most &
colors.

Optimization version (chromatic number)

Task: Find a proper coloring of GG that uses the
minimal number of colors.

Design an algorithm for solving general instances of the graph coloring
problem.

34

Exercise

N-Queens problem
Input: A chessboard of size N x N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

35

Exercise

. ofs[o[6[3[8 4]t [to[t1[7]2
N* Queens 711[al21]610[3 0|85
Input: A chessboard of size N x N B|1]10/9]5]2|0]7[11]6|3|4
to[o[3[s|7tt[e[s[a[1[2]6

Question: Given such a chessboard, is | [5]6|11]4]2]1|3|0|8|8]10]7
it possible to place IV sets of NV 11]7]0]1]10]4]8]6]3[2]5]9
the board so that no t 2|88 [3[e[s[7]tL[1[to[4]0
queens on the board so that no two sTalsTotole e[z 71811
queens of the same set are in the same glal1liolal7lslslsl3 ol
row, column, or diagonal? alto[7[i1fo[3[1[2]e]5]6]8
< [e[3[z]s]a8|aftt[a]7 o1]t0O

t]els[7]6o|z(to[5[4a(11]3

The answer is yes < a corresponding conflict graph admits a
N colors

coloring with

36

Outline

4. Problem Solving

38

Heuristics

Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. “Computer science as empirical inquiry: symbols and
search.” Communications of the ACM, ACM, 1976, 19(3)]

o effective rules

@ trial and error

Metaheuristic

Construction Local Search
Heuristics

Applications:
@ Optimization, Timetabling, Routing, Scheduling
o But also in Psychology, Economics, Management [Tversky, A.; Kahneman,
D. (1974). "Judgment under uncertainty: Heuristics and biases". Science 185]
Basis on empirical evidence rather than mathematical logic. Getting things
done in the given time. In problem solving good having creativity and
criticism.

39

The Mathematical Perspective

Beside psychologists, also mathematicians reflected upon problem solving
processes:

o George Pdlya, How to Solve it, 1945

o J. Hadamard, The Mathematician’'s Mind - The Psychology of Invention
in the Mathematical Field, 1945

40

Mathematical Problem Solving
George Pélya

George Pélya’s 1945 book How to Solve It:

[y

. Understand the problem.
. Make a plan.
. Carry out the plan.

A~ N

. Look back on your work. How could it be better?

http://en.wikipedia.org/wiki/How_to_Solve_It

41

http://en.wikipedia.org/wiki/How_to_Solve_It

Pélya's First Principle: Understand the Problem
@ Do you understand all the words used in stating the problem?
@ What are you asked to find or show?
@ Is there enough information to enable you to find a solution?
o Can you restate the problem in your own words?

@ Can you think of a picture or a diagram that might help you to
understand the problem?

42

Pélya's Second Principle: Devise a plan

There are many reasonable ways to solve problems.

@ Guess and check Also suggested:

o Make an orderly list @ Look for a pattern

o Eliminate possibilities @ Draw a picture

o Use symmetry @ Solve a simpler problem
o Consider special cases @ Use a model

o Use direct reasoning o Work backward

Choosing an appropriate strategy is best learned by solving many problems.

Pélya's Third Principle: Carry out the plan

“Needed is care and patience, given that you have the necessary
skills. Persist with the plan that you have chosen. If it continues
not to work discard it and choose another. Don't be misled, this is
how mathematics is done, even by professionals.”

Pélya's Fourth Principle: Review/Extend

“Much can be gained by taking the time to reflect and look back at
what you have done, what worked and what didn’t. Doing this will
enable you to predict what strategy to use to solve future problems.”

a4

Heuristic
Analogy
Generalization

Induction

Variation of the Problem

Auxiliary Problem

Here is a problem related to
yours and solved before

Specialization

Decomposing and
Recombining

Working backward

Draw & Figure

Auxiliary Elements

Informal Description

Can you find & problem analogous to your problem and solve
that?

Can you find & problem mare general than your problem?

Can you solve your problem by deriving & generalization from
some examples?

Can you vary or change your problem to create a new problem
(or set of problems) whose sclution(s) will help you solve your
original problem?

Can you find a subproblem or side problem whose solution will
help you solve your problem?

Can you find a problem related to yours that has already been
solved and use that to solve your problem?
Can you find & problem more specialized?

Can you decompose the problem and "recombine its elements
In some new manner"?

Can you start with the goal and work backwards to something
you already know?

Can you draw a picture of the problem?

Can you add some new element to your problem to get closer to
a solution?

Formal analogue
Map
Generalization

Induction

Search

Subgoal

Pattern recognition
Pattern matching
Reduction

Specialization

Divide and conguer

Backward chaining

Diagrammatic
Reasoning 131

Extension

Inspiration can strike anytime, particularly after an individual
had worked hard on a problem for days and then turned the
attention to another activity.

The Mathematician’s Mind - The Psychology of Invention in the
Mathematical Field, J. Hadamard, 1945

46

Outline

5. Modelling and Search
IP-models
CP-models
Modeling for Heuristics
Search

a7

solution algorithm = model + search

48

IP-models

Standard IP formulation: Let z,, be a 0-1 variable equal to 1 whenever the

vertex v takes the color k
and v, be 1 if color k is used and 0 otherwise

min E Yk

kEK

s.t. Z Top = 1, Yo eV,
keEK

Tok T Tuk < Yk, V(u,v) € E(GQ),Vk € K,

Ty € {0,1}, Vv e V,Vk e K

vk € K.

Yk S {07 1}

50

Column generation formulation

@ Notation

Independent set s, with cardinality c;
S: Collection of every maximal independent set of G
Sy: subset of S that contains v

As: 0-1 variable equal to 1 if independent set s is used

min E As

sES

s.t. Z As > 1, Yo eV,
seS,
As € {0,1}, Vs e S.

51

Constraint Programming

The domain of a variable z, denoted D(z), is a finite set of elements that
can be assigned to .

A constraint C' on X is a subset of the Cartesian product of the domains of
the variables in X, i.e., C' C D(x1) x -+ x D(x}) (extensional form). A tuple
(dy,...,dg) € Cis called a solution to C'.

Equivalently, we say that a solution (d1,...,d;) € C'is an assignment of the
value d; to the variable z;,V1 < i < k, and that this assignment satisfies C
(intentional form). If C' = (), we say that it is inconsistent.

53

Constraint Programming

Constraint Satisfaction Problem (CSP)

A CSP is a finite set of variables X, together with a finite set of constraints
(', each on a subset of X. A solution to a CSP is an assignment of a value
d € D(x) to each = € X, such that all constraints are satisfied
simultaneously.

Constraint Optimization Problem (COP)

A COP is a CSP P defined on the variables z1, ..., z,, together with an
objective function [: D(x1) X -+ x D(x,) — () that assigns a value to each
assignment of values to the variables. An optimal solution to a minimization
(maximization) COP is a solution d to P that minimizes (maximizes) the
value of f(d).

54

CP-model

CP formulation:

variables : domain(y;) = {1,..., K}
constraints : yi # y;
alldifferent({y; |i € C})

VieV
Vij € E(Q)
vC eC

55

Propagation: An Example

TnsumlinU
WA NT 9] NSW Vv SA T
Initial domains | R G B|RGB|RGB|{RGB|RGB RG B|IRGB
After WA=red |® GB|RGB/RGB|RGB| GB|RGB
After Q=green |® Bl ® |[R B|RGB B|[RG B
After V=biue |® Bl @ |R RGB

Figure 5.6 The progress of a map-coloring search with forward checking. WA =red
is assigned first; then forward checking deletes red from the domains of the neighboring
variables NT and SA. After Q = green, green is deleted from the domains of NT', SA, and
NSW. After V = blue, blue is deleted from the domains of NSW and SA4, leaving SA with
no legal values.

Constraint based Modelling

Can be done within the same framework of Constraint Programming.
See Constraint Based Local-Search (Hentenryck and Michel) [B4].

o Decide the variables.
An assignment of these variables should identify a candidate solution
or a candidate solution must be retrievable efficiently

Must be linked to some Abstract Data Type (arrays, sets, permutations).

@ Express the constraints on these variables

No restrictions are posed on the language in which the above two elements
are expressed.

58

Search

@ Backtracking (complete)
@ Branch and Bound (complete)

o Local search (incomplete)

60

Outline

6. Summary

61

Summary

1. Course Introduction

2. Combinatorial Optimization

@ Combinatorial Problems, Terminology
@ Solution Methods, Overview
o Travelling Salesman Problem

3. Problem Solving

@ Example: Graph Coloring Problem
@ Model + Search
@ Polya's view about Problem Solving

4. Basic Concepts from Algorithmics

62

Outlook

Next Time:

@ Construction Heuristics
o High level description of Local Search
@ Solver Systems

@ Setting up the Working Environment

In preparation:

@ Revise basic concepts in algorithmics (see slides available at the web
page and complement them with Cormen, Leiserson, Rivest and Stein.
Introduction to algorithms. 2001)

@ Revise slides and deep in the literature

@ Obligatory assignment 0!!

63

	Course Introduction
	Combinatorial Optimization
	Combinatorial Problems
	Solution Methods

	Exercise
	Problem Solving
	Modelling and Search
	IP-models
	CP-models
	Modeling for Heuristics
	Search

	Summary

