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Computational Complexity of LS

For a local search algorithm to be effective, search initialization
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

search initialization
any single search step, including computation of
evaluation function value

For any problem in PLS . . .
local optimality can be verified in polynomial time
improving search steps can be computed in polynomial time
but: finding local optima may require super-polynomial time
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Computational Complexity of LS

PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:

TSP with k-exchange neighborhood with k > 3
is PLS-complete.

TSP with 2- or 3-exchange neighborhood is in PLS, but
PLS-completeness is unknown.
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Learning goals of this section

Review basic formal and theoretical concepts

Learn about techniques and goals of experimental search space analysis

Develop intuition on features of local search that may guide the design
of LS algorithms
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Definitions

Problem instance π

Search space Sπ

Neighborhood function N : S ⊆ 2S

Evaluation function fπ : S → R

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by
the triplet L = 〈Sπ, Nπ, fπ〉.
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Search Landscape

Transition Graph of Iterative Improvement
Given L = 〈Sπ, Nπ, fπ〉, the transition graph of iterative improvement is a
directed acyclic subgraph obtained from L by deleting all arcs (i, j) for which
it holds that the cost of solution j is worse than or equal to the cost of
solution i.

It can be defined for other algorithms as well and it plays a central role in the
theoretical analysis of proofs of convergence.
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Ideal visualization of landscapes principles

Simplified landscape
representation Tabu Search Guided Local Search

Iterated Local Search Evolutionary Alg.
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Fundamental Properties

The behavior and performance of an LS algorithm on a given problem
instance crucially depends on properties of the respective search landscape.

Simple properties:

search space size |S|
reachability: solution j is reachable from solution i if neighborhood
graph has a path from i to j.

strongly connected neighborhood graph

weakly optimally connected neighborhood graph

distance between solutions
neighborhood size (ie, degree of vertices in neigh. graph)
cost of fully examining the neighborhood
relation between different neighborhood functions
(if N1(s) ⊆ N2(s) forall s ∈ S then N2 dominates N1)
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Neighborhood Operator

Goal: providing a formal description of neighborhood functions for the three
main solution representations:

Permutation
linear permutation: Single Machine Total Weighted Tardiness Problem
circular permutation: Traveling Salesman Problem

Assignment: Graph Coloring Problem, SAT, CSP
Set, Partition: Max Independent Set

A neighborhood function N : S → 2S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s′
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Permutations
Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
πi is the element at position i
posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι
π−1(i) = posπ(i)

∆N ⊂ Π
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Linear Permutations
Swap operator

∆S = {δiS |1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator

∆X = {δijX |1 ≤ i < j ≤ n}

δijX(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator

∆I = {δijI |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j
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Circular Permutations
Reversal (2-edge-exchange)

∆R = {δijR |1 ≤ i < j ≤ n}

δijR (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB |1 ≤ i < j < k ≤ n}

δijB (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB |1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)
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Assignments
An assignment can be represented as a mapping
σ : {X1 . . . Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E |1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ′ : σ′(Xi) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

}
Two-exchange operator

∆2E = {δij2E |1 ≤ i < j ≤ n}

δij2E(σ) =
{
σ′ : σ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ′(Xl) = σ(Xl)∀l 6= i, j
}
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Partitioning
An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E | v ∈ C, u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}
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Distances
Set of paths in L with s, s′ ∈ S:
Φ(s, s′) = {(s1, . . . , sh) | s1 = s, sh = s′ ∀i : 1 ≤ i ≤ h− 1, 〈si, si+1〉 ∈ EL}

If φ = (s1, . . . , sh) ∈ Φ(s, s′) let |φ| = h be the length of the path; then the
distance between any two solutions s, s′ is the length of shortest path
between s and s′ in L:

dN (s, s′) = min
φ∈Φ(s,s′)

|Φ|

diam(L) = max{dN (s, s′) | s, s′ ∈ S} (= maximal distance between any two
candidate solutions)
(= worst-case lower bound for number of search steps required for reaching
(optimal) solutions)

Note: with permutations it is easy to see that:

dN (π, π′) = dN (π−1 · π′, ι)
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Distances for Linear Permutation Representations

Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π′) = #{〈i, j〉|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi)}.
diam(GN ) = n(n− 1)/2

Interchange neighborhood operator
Computable in O(n) +O(n) since
dX(π, π′) = dX(π−1 · π′, ι) = n− c(π−1 · π′)
c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX

) = n− 1

Insert neighborhood operator
Computable in O(n) +O(n log(n)) since
dI(π, π

′) = dI(π
−1 · π′, ι) = n− |lis(π−1 · π′)| where lis(π) denotes the

length of the longest increasing subsequence.
diam(GNI

) = n− 1
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Distances for Circular Permutation Representations

Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm
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Distances for Assignment Representations

Hamming Distance

An assignment can be seen as a partition of n in k mutually exclusive
non-empty subsets

One-exchange neighborhood operator
The partition-distance d1E(P,P ′) between two partitions P and P ′ is
the minimum number of elements that must be moved between subsets
in P so that the resulting partition equals P ′.

The partition-distance can be computed in polynomial time by solving
an assignment problem. Given the assignment matrix M where in each
cell (i, j) it is |Si ∩ S′j | with Si ∈ P and S′j ∈ P ′ and defined A(P,P ′)
the assignment of maximal sum then it is d1E(P,P ′) = n−A(P,P ′)
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Example: Search space size and diameter for the TSP

Search space size = (n− 1)!/2

Insert neighborhood
size = (n− 3)n
diameter = n− 2

2-exchange neighborhood
size =

(
n
2

)
= n · (n− 1)/2

diameter in [n/2, n− 2]

3-exchange neighborhood
size =

(
n
3

)
= n · (n− 1) · (n− 2)/6

diameter in [n/3, n− 1]
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Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
GN = n-dimensional hypercube; diameter of GN = n.
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Let N1 and N2 be two different neighborhood functions for the same
instance (S, f, π) of a combinatorial optimization problem.
If for all solutions s ∈ S we have N1(s) ⊆ N2(s) then we say that N2

dominates N1

Example:

In TSP, 1-insert is dominated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchanges that are not
1-insert)
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Other Search Space Properties

number of (optimal) solutions |S′|, solution density |S′|/|S|

distribution of solutions within the neighborhood graph

Solution densities and distributions can generally be determined by:

exhaustive enumeration;
sampling methods;
counting algorithms (often variants of complete algorithms).
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Example: Correlation between solution density and search cost for GWSAT
over set of hard Random-3-SAT instances:
The less solutions, the harder to find them
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Phase Transition for 3-SAT

Random instances  m clauses of n uniformly chosen variables
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Classification of search positions

SLMIN

SLOPELEDGE

LMAXSLMAX

LMIN

IPLAT

position type > = <

SLMIN (strict local min) + – –
LMIN (local min) + + –
IPLAT (interior plateau) – + –
SLOPE + – +
LEDGE + + +
LMAX (local max) – + +
SLMAX (strict local max) – – +

“+” = present, “–” absent; table entries refer to neighbors with
larger (“>”) , equal (“=”), and smaller (“<”) evaluation function values
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Example: Complete distribution of position types
for hard Random-3-SAT instances

instance avg sc SLMIN LMIN IPLAT
uf20-91/easy 13.05 0% 0.11% 0%
uf20-91/medium 83.25 < 0.01% 0.13% 0%
uf20-91/hard 563.94 < 0.01% 0.16% 0%

instance SLOPE LEDGE LMAX SLMAX
uf20-91/easy 0.59% 99.27% 0.04% < 0.01%
uf20-91/medium 0.31% 99.40% 0.06% < 0.01%
uf20-91/hard 0.56% 99.23% 0.05% < 0.01%

(based on exhaustive enumeration of search space;
sc refers to search cost for GWSAT)
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Example: Sampled distribution of position types
for hard Random-3-SAT instances

instance avg sc SLMIN LMIN IPLAT
uf50-218/medium 615.25 0% 47.29% 0%
uf100-430/medium 3 410.45 0% 43.89% 0%
uf150-645/medium 10 231.89 0% 41.95% 0%

instance SLOPE LEDGE LMAX SLMAX
uf50-218/medium < 0.01% 52.71% 0% 0%
uf100-430/medium 0% 56.11% 0% 0%
uf150-645/medium 0% 58.05% 0% 0%

(based on sampling along GWSAT trajectories;
sc refers to search cost for GWSAT)
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Local Minima

Note: Local minima prevent local search progress.

Simple properties of local minima:

number of local minima: |lmin|, local minima density |lmin|/|S|

localization of local minima: distribution of local minima within the
neighborhood graph

Problem: Determining these measures typically requires
exhaustive enumeration of search space.

 Approximation based on sampling or estimation from
other measures (such as autocorrelation measures, see below).
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Example: Distribution of local minima for the TSP

Goal: Empirical analysis of distribution of local minima for
Euclidean TSP instances.

Experimental approach:

Sample sets of local optima of three TSPLIB instances using multiple
independent runs of two TSP algorithms (3-opt, ILS).

Measure pairwise distances between local minima (using bond distance
= number of edges in which two given tours differ).

Sample set of purportedly globally optimal tours using multiple
independent runs of high-performance TSP algorithm.

Measure minimal pairwise distances between local minima and respective
closest optimal tour (using bond distance).
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Empirical results:

Instance avg sq [%] avg dlmin avg dopt

Results for 3-opt
rat783 3.45 197.8 185.9
pr1002 3.58 242.0 208.6
pcb1173 4.81 274.6 246.0

Results for ILS algorithm
rat783 0.92 142.2 123.1
pr1002 0.85 177.2 143.2
pcb1173 1.05 177.4 151.8

(based on local minima collected from 1 000/200 runs of 3-opt/ILS)
avg sq [%]: average solution quality expressed in percentage deviation from optimal
solution
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Interpretation:

Average distance between local minima is small compared to maximal possible
bond distance, n.

 Local minima are concentrated in a relatively small region of the search
space.

Average distance between local minima is slightly larger than distance to
closest global optimum.

 Optimal solutions are located centrally in region of high local minima
density.

Higher-quality local minima found by ILS tend to be closer to each other and
the closest global optima compared to those determined by 3-opt.

 Higher-quality local minima tend to be concentrated in smaller regions of
the search space.

Note: These results are fairly typical for many types of TSP instances and instances
of other combinatorial problems.
In many cases, local optima tend to be clustered; this is reflected in multi-modal
distributions of pairwise distances between local minima.
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Fitness-Distance Correlation (FDC)

Idea: Analyze correlation between solution quality (fitness) g of candidate
solutions and distance d to (closest) optimal solution.

Measure for FDC: empirical correlation coefficient rfdc.

Fitness-distance plots, i.e., scatter plots of the (gi, di)
pairs underlying an estimate of rfdc, are often useful to
graphically illustrate fitness distance correlations.

The FDC coefficient, rfdc depends on the given neighborhood relation.
rfdc is calculated based on a sample of m candidate solutions (typically:
set of local optima found over multiple runs
of an iterative improvement algorithm).
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Example: FDC plot for TSPLIB instance rat783, based on 2500 local
optima obtained from a 3-opt algorithm
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High FDC (rfdc close to one):

‘Big valley’ structure of landscape provides guidance for
local search;

search initialization: high-quality candidate solutions provide
good starting points;

search diversification: (weak) perturbation is better than restart;

typical, e.g., for TSP.

Low FDC (rfdc close to zero):

global structure of landscape does not provide guidance for local search;

typical for very hard combinatorial problems, such as certain types of
QAP (Quadratic Assignment Problem) instances.
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Applications of fitness-distance analysis:

algorithm design: use of strong intensification (including initialization)
and relatively weak diversification mechanisms;

comparison of effectiveness of neighborhood relations;

analysis of problem and problem instance difficulty.

Limitations and short-comings:

a posteriori method, requires set of (optimal) solutions,
but: results often generalize to larger instance classes;

optimal solutions are often not known, using best known solutions can
lead to erroneous results;

can give misleading results when used as the sole basis for assessing
problem or instance difficulty.
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Ruggedness

Idea: Rugged search landscapes, i.e., landscapes with high
variability in evaluation function value between neighboring search positions,
are hard to search.

Example: Smooth vs rugged search landscape

Note: Landscape ruggedness is closely related to local minima density:
rugged landscapes tend to have many local minima.
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The ruggedness of a landscape L can be measured by means of
the empirical autocorrelation function r(i):

r(i) :=
1/(m− i) ·

∑m−i
k=1 (gk − ḡ) · (gk+i − ḡ)

1/m ·
∑m
k=1(gk − ḡ)2

where g1, . . . gm are evaluation function values sampled along an uninformed
random walk in L.

Note: r(i) depends on the given neighborhood relation.

Empirical autocorrelation analysis is computationally cheap compared to,
e.g., fitness-distance analysis.

(Bounds on) AC can be theoretically derived in many cases, e.g., the
TSP with the 2-exchange neighborhood.

There are other measures of ruggedness, such as empirical
autocorrelation coefficient and (empirical) correlation length.
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High AC (close to one):

“smooth” landscape;

evaluation function values for neighboring candidate solutions are close
on average;

low local minima density;

problem typically relatively easy for local search.

Low AC (close to zero):

very rugged landscape;

evaluation function values for neighboring candidate solutions are almost
uncorrelated;

high local minima density;

problem typically relatively hard for local search.
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Note:

Measures of ruggedness, such as AC, are often insufficient for
distinguishing between the hardness of individual
problem instances;

but they can be useful for

analyzing differences between neighborhood relations
for a given problem,

studying the impact of parameter settings of a given
SLS algorithm on its behavior,

classifying the difficulty of combinatorial problems.
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Plateaux

Plateaux, i.e., ‘flat’ regions in the search landscape

Intuition: Plateaux can impede search progress due to lack of guidance by
the evaluation function.
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Definitions

Region: connected set of search positions.
Border of region R: set of search positions with at least one direct
neighbor outside of R (border positions).
Plateau region: region in which all positions have
the same level, i.e., evaluation function value, l.
Plateau: maximally extended plateau region,
i.e., plateau region in which no border position has any
direct neighbors at the plateau level l.
Solution plateau: Plateau that consists entirely of solutions of the
given problem instance.
Exit of plateau region R: direct neighbor s of a border position of R
with lower level than plateau level l.
Open / closed plateau: plateau with / without exits.
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Measures of plateau structure:

plateau diameter = diameter of corresponding subgraph of GN

plateau width = maximal distance of any plateau position to the
respective closest border position

number of exits, exit density

distribution of exits within a plateau, exit distance distribution
(in particular: avg./max. distance to closest exit)
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Some plateau structure results for SAT:

Plateaux typically don’t have an interior, i.e., almost every position is on
the border.

The diameter of plateaux, particularly at higher levels, is comparable to
the diameter of search space. (In particular: plateaux tend to span large
parts of the search space, but are quite well connected internally.)

For open plateaux, exits tend to be clustered, but the average exit
distance is typically relatively small.
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Barriers and Basins

Observation:

The difficulty of escaping from closed plateaux or
strict local minima is related to the height of the barrier,
i.e., the difference in evaluation function, that needs to be overcome in order
to reach better search positions:

Higher barriers are typically more difficult to overcome
(this holds, e.g., for Probabilistic Iterative Improvement
or Simulated Annealing).
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Definitions:

Positions s, s′ are mutually accessible at level l
iff there is a path connecting s′ and s in the neighborhood graph that
visits only positions t with g(t) ≤ l.

The barrier level between positions s, s′, bl(s, s′)
is the lowest level l at which s′ and s′ are mutually accessible;
the difference between the level of s and bl(s, s′) is called
the barrier height between s and s′.

Basins, i.e., maximal (connected) regions of search positions
below a given level, form an important basis for characterizing
search space structure.
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Example: Basins in a simple search landscape and corresponding basin tree

B4

B3

B1

B2

l2
l1

B4

B3
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B2

Note: The basin tree only represents basins just below the critical levels at
which neighboring basins are joined (by a saddle).
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