DM811 Heuristics for Combinatorial Optimization

> Lecture 12 Efficient Local Search

> > Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Local Search for Graph coloring

Different choices for the candidate solutions, neighborhood structures and evaluation function define different approaches to the problem

k-fixed	complete	proper
<i>k</i> -fixed	partial	proper
<i>k</i> -fixed	complete	improper
<i>k</i> -fixed	partial	improper
<i>k</i> -variable	complete	proper
<i>k</i> -variable	partial	proper
<i>k</i> -variable	complete	improper
<i>k</i> -variable	partial	improper

Course Overview

- ✓ Combinatorial Optimization, Methods and Models
- ✔ CH and LS: overview
- ✓ Working Environment and Solver Systems
 - ~ Methods for the Analysis of Experimental Results
- Construction Heuristics
- ✓ Local Search: Components, Basic Algorithms
- Local Search: Neighborhoods and Search Landscape
- Efficient Local Search: Incremental Updates and Neighborhood Pruning
- [~] Stochastic Local Search & Metaheuristics
- Configuration Tools: F-race
- Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, Unrelated Parallel Machines, p-median, set covering, QAP, ...

Outline

Efficient Local Search Examples

1. Efficient Local Search

2. Examples SAT TSP

Outline

Efficient Local Search Examples

1. Efficient Local Search

2. Examples SAT TSP

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

Efficient Local Search Examples

For given problem instance π :

- 1. search space S_{π}
- 2. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
- 3. evaluation function $f_{\pi}: S \to \mathbf{R}$
- 4. set of memory states M_π
- 5. initialization function init : $\emptyset \to S_{\pi} \times M_{\pi}$)
- 6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$

7. termination predicate terminate : $S_{\pi} \times M_{\pi} \to \{\top, \bot\}$

Efficiency and Effectiveness

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:

- A. fast incremental evaluation (ie, delta evaluation)
- B. neighborhood pruning
- C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

- D. application of a metaheuristic
- E. definition of a larger neighborhood

Outline

1. Efficient Local Search

2. Examples SAT TSP

Notation:

- n 0-1 variables x_j , $j \in N = \{1, 2, ..., n\}$,
- m clauses C_i , $i \in M$, and weights $w_i (\geq 0)$, $i \in M = \{1, 2, \dots, m\}$
- $\max_{\mathbf{a} \in \{0,1\}^n} \sum \{ w_i \mid i \in M \text{ and } C_i \text{ is satisfied in } \mathbf{a} \}$
- $\bar{x}_j = 1 x_j$
- $L = \bigcup_{j \in N} \{x_j, \bar{x_j}\}$ set of literals
- $C_i \subseteq L$ for $i \in M$ (e.g., $C_i = \{x_1, \bar{x_3}, x_8\}$).

Let's take the case $w_j = 1$ for all $j \in N$

- Assignment: $\mathbf{a} \in \{0,1\}^n$
- Evaluation function: $f(\mathbf{a}) = \#$ unsatisfied clauses
- Neighborhood: one-flip
- Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest C_i)

A better approach:

- $C(x_j) = \{i \in M \mid x_j \in C_i\}$ (i.e., clauses dependent on x_j)
- $L(x_j) = \{l \in N \mid \exists i \in M \text{ with } x_l \in C_i \text{ and } x_j \in C_i\}$
- $f(\mathbf{a}) = \#$ unsatisfied clauses

•
$$\Delta(x_j) = f(\mathbf{a}) - f(\mathbf{a}'), \mathbf{a}' = \delta_{1E}^{x_j}(\mathbf{a})$$
 (score of x_j)

Initialize:

- compute f, score of each variable and list unsat clauses in O(mk)
- init $C(x_j)$ for all variables

<u>Examine</u>

• choose the var with best score

Update:

 \bullet change the score of variables affected, that is, look in $L(\cdot)$ and $C(\cdot)$ O(mk)

Even better approach (though same asymptotic complexity):

 \rightsquigarrow after the flip of x_j only the score of variables in $L(x_j)$ that critically depend on x_j actually changes

- Clause C_i is critically satisfied by a variable x_j in a iff:
 - x_j is in C_i
 - C_i is satisfied in **a** and flipping x_j makes C_i unsatisfied (e.g., $1 \lor 0 \lor 0$ but not $1 \lor 1 \lor 0$)

Keep a list of such clauses for each var

- x_j is critically dependent on x_l under a iff: there exists $C_i \in C(x_j) \cap C(x_l)$ and such that flipping x_j :
 - C_i changes satisfaction status
 - $\bullet \ C_i$ changes satisfied /critically satisfied status

Initialize:

- compute score of variables;
- init $C(x_j)$ for all variables
- init status criticality for each clause

Update:

```
 \begin{array}{c} \hline \text{change sign to score of } x_j \\ \text{for all } C_i \text{ in } C(x_j) \text{ do} \\ & & & \\ \text{for all } x_l \in C_i \text{ do} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \text{ update score } x_l \text{ depending on its critical status before flipping } x_j \end{array}
```

Efficient implementations of 2-opt, 2H-opt and 3-opt local search.

- A. Delta evaluation already in O(1)
- B. Fixed radius search + DLB
- C. Data structures

Details at black board and references [Bentley, 1992; Johnson and McGeoch, 2002; Applegate et al., 2006]

References

- Applegate D.L., Bixby R.E., Chvátal V., and Cook W.J. (2006). The Traveling Salesman Problem: A Computational Study. Princeton University Press.
- Bentley J. (1992). Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing, 4(4), pp. 387–411.
- Johnson D.S. and McGeoch L.A. (2002). Experimental analysis of heuristics for the STSP. In *The Traveling Salesman Problem and Its Variations*, edited by G. Gutin and A. Punnen, pp. 369–443. Kluwer Academic Publishers, Boston, MA, USA.