DM811 Heuristics for Combinatorial Optimization

> Lecture 13 Exercises: GCP

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Course Overview

- ✓ Combinatorial Optimization, Methods and Models
- ✔ CH and LS: overview
- ✓ Working Environment and Solver Systems
 - ~ Methods for the Analysis of Experimental Results
- Construction Heuristics
- ✓ Local Search: Components, Basic Algorithms
- Local Search: Neighborhoods and Search Landscape
- Efficient Local Search: Incremental Updates and Neighborhood Pruning
- [~] Stochastic Local Search & Metaheuristics
- Configuration Tools: F-race
- Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, Unrelated Parallel Machines, p-median, set covering, QAP, ...

Recap

Outline

Recap. GCP

1. Recap.

2. GCP

Outline

1. Recap.

2. GCF

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

Recap. GCP

For given problem instance π :

- 1. search space S_{π}
- 2. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
- 3. evaluation function $f_{\pi}: S \to \mathbf{R}$
- 4. set of memory states M_π
- 5. initialization function init : $\emptyset \to S_{\pi} \times M_{\pi}$
- 6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$

7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow \{\top, \bot\}$

Efficiency and Effectiveness

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:

- A. fast incremental evaluation (ie, delta evaluation)
- B. neighborhood pruning
- C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

- D. application of a metaheuristic
- E. definition of a larger neighborhood

Outline

Recap. GCP

1. Recap.

2. GCP

Polynomial time reduction of the graph G to G' such that given a feasible k-coloring for G' it is striaghtforward to derive a feasible k-coloring for G.

Searching for a k-coloring (k fixed)

- Remove under-constrained nodes: $v \in V, d(v) < k$
- Remove subsumed nodes: $v \in V$, if $\exists u \in V, uv \notin E, A(v) \subseteq A(u)$
- Merge nodes that must have the same color: eg, if any nodes are fully connected to a clique of size k-1, then these nodes can be merged into a single node with all the constraints of its constituents, because they must have the same color.

Local Search for Graph coloring

Recap. GCP

[Chiarandini et al., 2007]

Different choices for the candidate solutions:

decision vs	assignment	level of	
optimization	of colors to V	feasibility	
<i>k</i> -fixed	complete	proper	
<i>k</i> -fixed	partial	proper	+ + +
k-fixed	complete	improper	+ + +
<i>k</i> -fixed	partial	improper	_
k-variable	complete	proper	++
k-variable	partial	proper	—
k-variable	complete	improper	++
k-variable	partial	improper	—

imply different neighborhood structures and evaluation functions.

Local Search for GCP

Scheme: k-fixed / complete / improper

Local Search

- Solution representation: var{int} a[|V|](1..K)
- Evaluation function: conflicting edges or conflicting vertices
- Neighborhood: one-exchange

```
\begin{array}{l|l} \text{Naive approach: } O(n^2k) \\ \text{Neighborhood examination} \\ \text{for all } v \in V \text{ do} \\ & & \\ & \text{for all } k \in 1..k \text{ do} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
```

Better approach:

- $\bullet \ V^c$ set of vertices involved in a conflict
- $\Delta(v,k)$ stores number of vertices adjacent to v in each color class k

```
Procedure Initialise_\Delta(G, \mathbf{a})

\Delta = 0

for each v in V do

for each u in A_V(v) do

\Delta(u, \mathbf{a}(v)) = \Delta(u, \mathbf{a}(v)) + 1
```

```
\begin{array}{l} \textbf{Procedure Examine}(G,N(\textbf{a})) \\ \textbf{for each } v \text{ in } V^c \textbf{ do} \\ & \begin{tabular}{l} & \textbf{for each } k \in \Gamma \textbf{ do} \\ & \begin{tabular}{l} & \end{tabular} \\ & \end{tabular} \quad \textbf{compute } \Delta(v,k) = \boldsymbol{\Delta}(v,k) - \boldsymbol{\Delta}(v,\textbf{a}(v)) \end{array}
```

```
Procedure Update \Delta(G, a, v, k)
for each u in A_V(v) do
\Delta(u, a(v)) = \Delta(u, a(v)) - 1
\Delta(u, k) = \Delta(u, k) + 1
```

Comet examples Tabu Search

Recap. GCP

./coloring.co

Randomized Iterative Improvement

Guided Local Search

- evaluation function: $f'(s) = f(s) + \lambda \cdot \sum_{i=1}^{|E|} w_i \cdot I_i(\mathcal{C})$ w_i is the penalty cost associated to edge i; $I_i(s)$ is an indicator function that takes the value 1 if edge i causes a colour conflict in s and 0 otherwise; parameter λ
- penalty weights are initialised to 0
- updated each time Iterative Improvement reaches a local optimum in f'; increment the penalties of all edges with maximal utility.

$$u_i = I_i(s) \cdot \frac{1}{1+w_i}.$$

• once a local optimum is reached, the search continues for sw non-worsening exchanges (side walk moves) before the evaluation function f' is updated. Update of w_i and f' is done in the worst case in $O(k|V|^2)$.

Local Search for GCP

Scheme: k-variable / complete / proper

Local Search

- Solution representation: var{int} a[|V|](1..K)
- Neighborhood: one-exchange restricted to feasible moves Kempe chains

• Evaluation function: $f(s) = -\sum_{i=1}^{k} |C_i|^2$ favours few large color classes wrt. many small color classes

Local Search for GCP Iterated Greedy

Scheme: k-variable / complete / proper

Local Search

- Solution representation: var{int} a[|V|](1..K)
- Neighborhood: permutation of color classes + greedy algorithm
- Evaluation function: number of colors

Theorem

Let φ be a k-coloring of a graph G and π a permutation such that if $\varphi(v_{\pi(i)}) = \varphi(v_{\pi(m)}) = c$ then $\varphi(v_{\pi(j)}) = c, \forall i \leq j \leq m$. Applying the greedy algorithm to π will produce a coloring using k or fewer colors.

Local Search for GCP

Scheme: k-variable / complete / improper

Local Search

- Solution representation: var{int} a[|V|](1..K)
- Neighborhood: one-exchange
- Evaluation function: $f(s) = -\sum_{i=1}^{k} |C_i|^2 + \sum_{i=1}^{k} 2|C_i||E_i|$

Ev. function chosen in such a way that an improvement in feasibility (in the worst case by coloring a vertex to a new color class) offsets any improvement in solution quality (in the best case by moving a vertex to the first color class).

References

Chiarandini M., Dumitrescu I., and Stützle T. (2007). Stochastic local search algorithms for the graph colouring problem. In Handbook of Approximation Algorithms and Metaheuristics, edited by T.F. Gonzalez, Computer & Information Science Series, pp. 63.1–63.17. Chapman & Hall/CRC, Boca Raton, FL, USA. Preliminary version available as Tech. Rep. AIDA-05-03 at Intellectics Group, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany.