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Combinatorial Optimization, Methods and Models

CH and LS: overview

Working Environment and Solver Systems

Methods for the Analysis of Experimental Results

Construction Heuristics

Local Search: Components, Basic Algorithms

Local Search: Neighborhoods and Search Landscape

Efficient Local Search: Incremental Updates and Neighborhood Pruning
Stochastic Local Search & Metaheuristics

Configuration Tools: F-race

Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...
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Summary: Local Search Algorithms Recar-
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. neighborhood relation A, C S, x S,

3. evaluation function f : S — R

4. set of memory states M,

5. initialization function init : ) — S, x M,
6. step function step: S; x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}



Recap.

Efficiency and Effectiveness

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast incremental evaluation (ie, delta evaluation)
B. neighborhood pruning

C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood
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Recap
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Preprocessing rules

Polynomial time reduction of the graph GG to GG’ such that given a feasible
k-coloring for GG’ it is striaghtforward to derive a feasible k-coloring for G.

Searching for a k-coloring (% fixed)
@ Remove under-constrained nodes: v € V. d(v) < k
@ Remove subsumed nodes: v € V, if Ju e V,uv & E, A(v) C A(u)
@ Merge nodes that must have the same color: eg, if any nodes are fully
connected to a clique of size k& — 1, then these nodes can be merged into
a single node with all the constraints of its constituents, because they
must have the same color.




Local Search for Graph coloring

Different choices for the candidate solutions:

GCP

[Chiarandini et al., 2007]

decision vs assignment level of
optimization  of colors to V  feasibility
k-fixed complete proper
k-fixed partial proper | + + +
k-fixed complete  improper | + + +
k-fixed partial  improper —
k-variable complete proper ++
k-variable partial proper —
k-variable complete  improper ++
k-variable partial  improper —

imply different neighborhood structures and evaluation functions.



Local Search for GCP Recan

Scheme: k-fixed / complete / improper
Local Search
@ Solution representation: var{int} al[lV|](1..K)

o Evaluation function: conflicting edges or conflicting vertices

@ Neighborhood: one-exchange

Naive approach: O(n?k)
Neighborhood examination
for all v € V do
L for all k € 1..k do
| compute A(v, k)
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Better approach:

@ /¢ set of vertices involved in a conflict
o A(v, k) stores number of vertices adjacent to v in each color class %

Procedure Initialise A(G,a)
A=0
for each v in V do
L for each u in Ay (v) do
| A(u,a(v)) = A(u,a(v)) +1

Procedure Examine(G,N(a))
for each v in V¢ do
for each k € T" do
L | compute A(v, k) = A(v, k) — A(v,a(v))

Procedure Update A(G,a,v,k)
for each w in Ay (v) do

A(u,a(v)) = Au,a(v)) —1
L Au, k) = A(u, k) + 1



Comet examples Recar
Tabu Search

./coloring.co


./coloring.co

Randomized lterative Improvement

1-wp wp
select vin Ve selectv,c
randomly randomly

best colour is not best colour is
less recent less recent
select the 1-p P
best colouc
select the select less
best colouc recent colouc

Recap
GcP
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Guided Local Search ccp

o evaluation function: [/(s) = f(s) + A~ Z‘Ii‘l w; - I;(C)
w; is the penalty cost associated to edge i;
I;(s) is an indicator function that takes the value 1 if edge i causes a
colour conflict in s and 0 otherwise;
parameter \

@ penalty weights are initialised to 0

@ updated each time Iterative Improvement reaches a local optimum in f’;
increment the penalties of all edges with maximal utility.

1

w; = I;(s) - T

@ once a local optimum is reached, the search continues for sw
non-worsening exchanges (side walk moves) before the evaluation
function f’ is updated. Update of w; and f’ is done in the worst case in
O(k|V|?).
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Local Search for GCP Recep

Scheme: k-variable / complete / proper

Local Search
@ Solution representation: var{int} al[lV|](1..K)

@ Neighborhood: one-exchange restricted to feasible moves
Kempe chains

e Evaluation function: f(s) = —>"/" [C;|?
favours few large color classes wrt. many small color classes
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Local Search for GCP Recop

Iterated Greedy

Scheme: k-variable / complete / proper

Local Search
@ Solution representation: var{int} al[lV|](1..K)
@ Neighborhood: permutation of color classes + greedy algorithm

@ Evaluation function: number of colors

Theorem

Let v be a k-coloring of a graph G and 7 a permutation such that

if o(vr(iy) = ©(Vr(m)) = ¢ then p(vr(;)) = ¢, Vi < j <m.

Applying the greedy algorithm to m will produce a coloring using k or fewer
colors.
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Local Search for GCP Recan

Scheme: k-variable / complete / improper

Local Search
@ Solution representation: var{int} a[lV|](1..K)
@ Neighborhood: one-exchange
o Evaluation function: f(s) = — Zf:l 1Ci|% + Zf:l 2

C

Ev. function chosen in such a way that an improvement in feasibility
(in the worst case by coloring a vertex to a new color class)

offsets any improvement in solution quality

(in the best case by moving a vertex to the first color class).
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