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Recap.
GCPCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

4 Working Environment and Solver Systems

˜ Methods for the Analysis of Experimental Results

4 Construction Heuristics

4 Local Search: Components, Basic Algorithms

Local Search: Neighborhoods and Search Landscape

Efficient Local Search: Incremental Updates and Neighborhood Pruning

˜ Stochastic Local Search & Metaheuristics

Configuration Tools: F-race

Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...
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Recap.
GCPOutline

1. Recap.

2. GCP
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Recap.
GCPSummary: Local Search Algorithms

(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. neighborhood relation Nπ ⊆ Sπ × Sπ

3. evaluation function fπ : S → R

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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Recap.
GCPEfficiency and Effectiveness

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast incremental evaluation (ie, delta evaluation)

B. neighborhood pruning

C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood
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Recap.
GCPOutline
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Recap.
GCPPreprocessing rules

Polynomial time reduction of the graph G to G′ such that given a feasible
k-coloring for G′ it is striaghtforward to derive a feasible k-coloring for G.

Searching for a k-coloring (k fixed)

Remove under-constrained nodes: v ∈ V, d(v) < k

Remove subsumed nodes: v ∈ V, if ∃u ∈ V, uv 6∈ E,A(v) ⊆ A(u)

Merge nodes that must have the same color: eg, if any nodes are fully
connected to a clique of size k − 1, then these nodes can be merged into
a single node with all the constraints of its constituents, because they
must have the same color.
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Recap.
GCPLocal Search for Graph coloring

[Chiarandini et al., 2007]
Different choices for the candidate solutions:

decision vs assignment level of
optimization of colors to V feasibility

k-fixed complete proper
k-fixed partial proper + + +
k-fixed complete improper + + +
k-fixed partial improper −

k-variable complete proper ++
k-variable partial proper −
k-variable complete improper ++
k-variable partial improper −

imply different neighborhood structures and evaluation functions.
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Recap.
GCPLocal Search for GCP

Scheme: k-fixed / complete / improper

Local Search
Solution representation: var{int} a[|V|](1..K)

Evaluation function: conflicting edges or conflicting vertices

Neighborhood: one-exchange

Naive approach: O(n2k)
Neighborhood examination
for all v ∈ V do

for all k ∈ 1..k do
compute ∆(v, k)
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Better approach:

V c set of vertices involved in a conflict
∆(v, k) stores number of vertices adjacent to v in each color class k

Procedure Initialise_∆(G,a)
∆ = 0
for each v in V do

for each u in AV (v) do
∆(u, a(v)) = ∆(u, a(v)) + 1

Procedure Examine(G,N(a))
for each v in V c do

for each k ∈ Γ do
compute ∆(v, k) = ∆(v, k)−∆(v, a(v))

Procedure Update_∆(G,a,v,k)
for each u in AV (v) do

∆(u, a(v)) = ∆(u, a(v))− 1
∆(u, k) = ∆(u, k) + 1



Recap.
GCPComet examples

Tabu Search

./coloring.co
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Recap.
GCPRandomized Iterative Improvement

select the 
best colour

select less
recent colour

select the 
best colour

p

select
randomly

less recent

wp

less recent

c

v in Vc

c

c

1−p

1−wp

select v,c
randomly

best colour is not best colour is

13



Recap.
GCPGuided Local Search

evaluation function: f ′(s) = f(s) + λ ·
∑|E|
i=1 wi · Ii(C)

wi is the penalty cost associated to edge i;
Ii(s) is an indicator function that takes the value 1 if edge i causes a
colour conflict in s and 0 otherwise;
parameter λ

penalty weights are initialised to 0

updated each time Iterative Improvement reaches a local optimum in f ′;
increment the penalties of all edges with maximal utility.

ui = Ii(s) ·
1

1 + wi
.

once a local optimum is reached, the search continues for sw
non-worsening exchanges (side walk moves) before the evaluation
function f ′ is updated. Update of wi and f ′ is done in the worst case in
O(k|V |2).

14



Recap.
GCPLocal Search for GCP

Scheme: k-variable / complete / proper

Local Search
Solution representation: var{int} a[|V|](1..K)

Neighborhood: one-exchange restricted to feasible moves
Kempe chains

C Cji

Evaluation function: f(s) = −
∑k
i=1 |Ci|2

favours few large color classes wrt. many small color classes
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Recap.
GCPLocal Search for GCP

Iterated Greedy

Scheme: k-variable / complete / proper

Local Search
Solution representation: var{int} a[|V|](1..K)

Neighborhood: permutation of color classes + greedy algorithm

Evaluation function: number of colors

Theorem
Let ϕ be a k-coloring of a graph G and π a permutation such that
if ϕ(vπ(i)) = ϕ(vπ(m)) = c then ϕ(vπ(j)) = c, ∀i ≤ j ≤ m.
Applying the greedy algorithm to π will produce a coloring using k or fewer
colors.
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Recap.
GCPLocal Search for GCP

Scheme: k-variable / complete / improper

Local Search
Solution representation: var{int} a[|V|](1..K)

Neighborhood: one-exchange

Evaluation function: f(s) = −
∑k
i=1 |Ci|2 +

∑k
i=1 2|Ci||Ei|

Ev. function chosen in such a way that an improvement in feasibility
(in the worst case by coloring a vertex to a new color class)
offsets any improvement in solution quality
(in the best case by moving a vertex to the first color class).
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Recap.
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