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Recap.
Other COPsCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

4 Working Environment and Solver Systems

4 Methods for the Analysis of Experimental Results

4 Construction Heuristics

4 Local Search: Components, Basic Algorithms

4 Local Search: Neighborhoods and Search Landscape

4 Efficient Local Search: Incremental Updates and Neighborhood Pruning

4 Stochastic Local Search & Metaheuristics

4 Configuration Tools: F-race

Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...

2



Recap.
Other COPsOutline
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2. Other Combinatorial Optimization Problems
Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing
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Other COPsSummary: Local Search Algorithms

(as in [Hoos, Stützle, 2005])

For given problem instance π:

1. search space Sπ

2. neighborhood relation Nπ ⊆ Sπ × Sπ

3. evaluation function fπ : S → R

4. set of memory states Mπ

5. initialization function init : ∅ → Sπ ×Mπ)

6. step function step : Sπ ×Mπ → Sπ ×Mπ

7. termination predicate terminate : Sπ ×Mπ → {>,⊥}
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Other COPsEfficiency and Effectiveness

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast incremental evaluation (ie, delta evaluation)

B. neighborhood pruning

C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood
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Other COPsSingle Machine Total Weighted Tardiness

Given: a set of n jobs {J1, . . . , Jn} to be processed on a single machine
and for each job Ji a processing time pi , a weight wi and a due date di .

Task: Find a schedule that minimizes
the total weighted tardiness

∑n
i=1 wi · Ti

where Ti = max{Ci − di , 0} (Ci completion time of job Ji )

Example:
Job J1 J2 J3 J4 J5 J6
Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2

Sequence φ = J3, J1, J5, J4, J1, J6
Job J3 J1 J5 J4 J2 J6
Ci 2 5 9 12 14 17
Ti 0 0 2 3 1 0
wi · Ti 0 0 2 15 3 0
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Other COPsSingle Machine Total Weighted Tardiness Problem

Interchange: size
(n
2

)
and O(|i − j |) evaluation each

first-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj +wkTk must decrease because jobs
in πj , . . . , πk can only increase their tardiness.

pπj ≥ pπk possible use of auxiliary data structure to speed up the com-
putation

best-improvement: πj , πk

pπj ≤ pπk for improvements, wjTj + wkTk must decrease at least as
the best interchange found so far because jobs in πj , . . . , πk

can only increase their tardiness.
pπj ≥ pπk possible use of auxiliary data structure to speed up the com-

putation

Swap: size n − 1 and O(1) evaluation each
Insert: size (n − 1)2 and O(|i − j |) evaluation each
But possible to speed up with systematic examination by means of
swaps: an insert is equivalent to |i − j | swaps hence overall examination
takes O(n2)
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Other COPsLocal Search for the Traveling Salesman Problem

k-exchange heuristics
2-opt
2.5-opt
Or-opt
3-opt

complex neighborhoods
Lin-Kernighan
Helsgaun’s Lin-Kernighan
Dynasearch
ejection chains approach

Implementations exploit speed-up techniques
1. neighborhood pruning: fixed radius nearest neighborhood search
2. neighborhood lists: restrict exchanges to most interesting candidates
3. don’t look bits: focus perturbative search to “interesting” part
4. sophisticated data structures
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TSP data structures
Tour representation:

reverse(a, b)

succ

prec

sequence(a,b,c) – check whether b is within a and b
Possible choices:

|V | < 1.000 array for π and π−1

|V | < 1.000.000 two level tree
|V | > 1.000.000 splay tree

Moreover static data structure:
priority lists
k-d trees
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Look at implementation of local search for TSP by T. Stützle:

File: http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c

two_opt_b(tour); % best improvement, no speedup
two_opt_f(tour); % first improvement, no speedup
two_opt_best(tour); % first improvement including speed−ups (dlbs, fixed radius near

neighbour searches, neughbourhood lists)
two_opt_first(tour); % best improvement including speed−ups (dlbs, fixed radius near

neighbour searches, neughbourhood lists)
three_opt_first(tour); % first improvement
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[Appelgate Bixby, Chvátal, Cook, 2006]
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Other COPsQuadratic Assignment Problem

Given:
n units with a matrix F = [fij ] ∈ Rn×n of flows between them and
n locations with a matrix D = [duv ] ∈ Rn×n of distances

Task: Find the assignment σ of units to locations that minimizes the
sum of product between flows and distances, ie,

min
σ∈Σ

∑
i,j

fijdσ(i)σ(j)

Applications: hospital layout; keyboard layout
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Other COPsQuadratic Programming Formulation

i1

i2

i3

i4

i5

u1

u2

u3

u4

u5

xiu ∈ [0; 1]

indices i , j for units and u, v for locations:

min
∑

i
∑

u
∑

j
∑

v fijduvxiuxjv +
(∑

i
∑

u ciuxiu
)

s.t.
∑

i xiu = 1 ∀u∑
u xiu = 1 ∀i

x ≥ 0 and integer ∀i , u

Largest instances solvable exactly n = 30
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Example: QAP

D =


0 4 3 2 1
4 0 3 2 1
3 3 0 2 1
2 2 2 0 1
1 1 1 1 0

 F =


0 1 2 3 4
1 0 2 3 4
2 2 0 3 4
3 3 3 0 4
4 4 4 4 0



The optimal solution is σ = (1, 2, 3, 4, 5), that is,
facility 1 is assigned to location 1,
facility 2 is assigned to location 2, etc.

The value of f (σ) is 100.
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Delta evaluation

Evaluation of 2-exchange {r , s} can be done in O(n)
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Example: Tabu Search for QAP

Solution representation: permutation π
Initial Solution: randomly generated
Neighborhood: interchange
∆I : δ(π) = {π′|π′k = πk for all k 6= {i , j} and π′i = πj , π

′
j = πi}

Tabu status: forbid δ that place back the items in the positions they
have already occupied in the last tt iterations (short term memory)

Implementation details:
compute f (π′)− f (π) in O(n) or O(1) by storing the values all possible
previous moves.
maintain a matrix [Tij ] of size n × n and write the last time item i was
moved in location k plus tt
δ is tabu if it satisfies both:

Ti,π(j) ≥ current iteration
Tj,π(i) ≥ current iteration
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Example: Robust Tabu Search for QAP

Aspiration criteria:

allow forbidden δ if it improves the last π∗

select δ if never chosen in the last A iterations (long term memory)

Parameters: tt ∈ [b0.9nc, d1.1n + 4e] and A = 5n2
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Example: Reactive Tabu Search for QAP

Aspiration criteria:

allow forbidden δ if it improves the last π∗

Tabu Tenure

maintain a hash table (or function) to record previously visited solutions

increase tt by a factor αinc(= 1.1) if the current solution was previously
visited

decrease tt by a factor αdec(= 0.9) if tt not changed in the last sttc
iterations or all moves are tabu

Trigger escape mechanism if a solution is visited more than nr(= 3)
times

Escape mechanism = 1 + (1 + r) ·ma/2 random moves
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Other COPsLinear Ordering Problem

Input: an n × n matrix C

Task: Find a permutation π of the column and row indices {1, . . . , n} such
that the value

f (π) =
n∑

i=1

n∑
j=i+1

cπiπj

is maximized. In other terms, find a permutation of the columns and rows of
C such that the sum of the elements in the upper triangle is maximized.
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Consider as an example the (5,5)-matrix:

H =


0 16 11 15 7
21 0 14 15 9
26 23 0 26 12
22 22 11 0 13
30 28 25 24 0


π = (1, 2, 3, 4, 5). The sum of its superdiagonal elements is 138.
π = (5, 3, 4, 2, 1) i.e., H12 becomes Hπ(1)π(2) = H54 in the permuted matrix.
Thus the optimal triangulation of H is

H∗ =


0 25 24 28 30
12 0 26 23 26
13 11 0 22 22
9 14 15 0 21
7 11 15 16 0


Now the sum of superdiagonal elements is 247.
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Definition: A directed graph (or digraph) D consists of a non-empty finite
set V (D) of distinct vertices and a finite set A of ordered pairs of distinct
vertices called arcs.

Feedback arc set problem (FASP)

Input: A directed graph D = (V ,A), where V = {1, 2, . . . , n}, and arc
weights cij for all [ij ] ∈ A

Task: Find a permutation π1, π2, . . . πn of V (that is, a linear ordering of V )
such that the total costs of those arcs [πjπi ] where j > i (that is, the arcs
that point backwards in the ordering)

f (π) =
n∑

i=1

n∑
j=i+1

cπjπi

is minimized.

37



Recap.
Other COPsLOP Applications: Graph Theory

Definition: A directed graph (or digraph) D consists of a non-empty finite
set V (D) of distinct vertices and a finite set A of ordered pairs of distinct
vertices called arcs.

Feedback arc set problem (FASP)

Input: A directed graph D = (V ,A), where V = {1, 2, . . . , n}, and arc
weights cij for all [ij ] ∈ A

Task: Find a permutation π1, π2, . . . πn of V (that is, a linear ordering of V )
such that the total costs of those arcs [πjπi ] where j > i (that is, the arcs
that point backwards in the ordering)

f (π) =
n∑

i=1

n∑
j=i+1

cπjπi

is minimized.

37



Recap.
Other COPsLOP Applications: Graph Theory (2)

Definition: A linear ordering of a finite set of vertices V = {1, 2, . . . , n} is a
bijective mapping (permutation) π : {1, 2, . . . , n} → V . For u, v ∈ V , we say
that u is “before” v if π−1(u) < π−1(v) (π−1(i) = posπ(i)).

Definition: A digraph D is complete if, for every pair x , y of distinct vertices
of D both xy and yx arcs are in D.

Definition: An oriented graph is a digraph with no cycle of length two. A
tournament is an oriented graph where every pair of distinct vertices are
adjacent.

Remark: Given a digraph D = (V ,A) and a linear ordering of the vertices V ,
the arc set E = {[uv ]|π−1(u) < π−1(v)} forms an acyclic tournament on V .
Similarly, an acyclic tournament T = (V ,E ) induces a linear ordering of V .
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LOP Applications: Graph Theory (3)

Definition: The cost of a linear ordering is expressed by∑
π−1(u)<π−1(v)

cuv

where the costs cuv are the costs associated to the arcs.

Linear Ordering Problem

Input: Given a complete digraph D = (V ,A) with arc weights cij for all
ij ∈ A

Task: Find an acyclic tournament T = (V ,T ) in D such that

f (T ) =
∑
ij∈T

cij

is maximized.
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Recap.
Other COPsAggregation of Individual Preferences

Kemeny’s problem. Suppose that there are m persons and each person i ,
i = 1, ...,m, has ranked n objects by giving a linear ordering Ti of the
objects. Which common linear ordering aggregates the individual orderings in
the best possible way?

 linear ordering problem by setting cij = number of persons preferring
object Oi to object Oj
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Input-output analysis (Leontief, Nobel prize)

The economy of a state is divided into n sectors, and an n × n input-output
matrix C is constructed where the entry cij denotes the transactions from
sector i to sector j in that year.

Triangulation (ie, solving associated LOP) allows identification of important
inter-industry relations in an economy (from primary stage sectors via the
manufacturing sectors to the sectors of final demand) and consequent
comparisons between different countries.

Depicts dependencies between the different branches of an economy
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Other COPsRanking in Sports Tournaments

Hij = number of goals which were scored by team i against team j .

R. Martí, G. Reinelt, R. Martí and G. Reinelt. The Linear Ordering Problem,
Introduction. Springer Berlin Heidelberg, 2011, 1-15
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1. Recap.

2. Other Combinatorial Optimization Problems
Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing
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Other COPsKnapsack, Bin Packing, Cutting Stock

Knapsack

Given: a knapsack with maximum weight W and a set of n items
{1, 2, . . . , n}, with each item j associated to a profit pj and to a weight wj .

Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W .

One dimensional Bin Packing

Given: A set L = (a1, a2, . . . , an) of items, each with a size s(ai ) ∈ (0, 1] and
an unlimited number of unit-capacity bins B1,B2, . . . ,Bm.

Task: Pack all the items into a minimum number of unit-capacity bins
B1,B2, . . . ,Bm.

Cutting stock

Each item has a profit pj > 0 and a number of times it must appear ai .
The task is to select a subset of items to be packed in a single finite bin that
maximizes the total selected profit.
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Heuristics for Bin Packing

Construction Heuristics
Best Fit Decreasing (BFD)

First Fit Decreasing (FFD) Cmax(FFD) ≤ 11
9 Cmax(OPT ) + 6

9

Local Search: [Alvim and Aloise and Glover and Ribeiro, 1999]

Step 1: remove one bin and redistribute items by BFD

Step 2: if infeasible, re-make feasible by redistributing items for
pairs of bins, such that their total weights becomes equal
(number partitioning problem)
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[Levine and Ducatelle, 2004]
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Two dimensional bin packing

Given: A set L = (a1, a2, . . . , an) of n rectangular items, each with a width
wj and a height hj and an unlimited number of identical rectangular bins of
width W and height H.
Task: Allocate all the items into a minimum number of bins, such that the
original orientation is respected (no rotation of the items is allowed).

Two dimensional strip packing

Given: A set L = (a1, a2, . . . , an) of n rectangular items, each with a width
wj and a height hj and a bin of width W and infinite height (a strip).
Task: Allocate all the items into the strip by minimizing the used height and
such that the original orientation is respected (no rotation of the items is
allowed).

Two dimensional cutting stock

Each item has a profit pj > 0 and the task is to select a subset of items to be
packed in a single finite bin that maximizes the total selected profit.
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Three dimensional

Given: A set L = (a1, a2, . . . , an) of rectangular boxes, each with a width wj ,
height hj and depth dj and an unlimited number of three-dimensional bins
B1,B2, . . . ,Bm of width W , height H, and depth D.

Task: Pack all the boxes into a minimum number of bins, such that the
original orientation is respected (no rotation of the boxes is allowed)
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See http://www.nada.kth.se/~viggo/problemlist/
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Input: a finite set of time periods and courses with assigned: a teacher, a set
of attending students and a suitable room.

Task: Produce weekly timetable of courses, that is: assign a time period of
the week (typically one hour) to every course such that courses are assigned
to different time periods if:

they are taught by the same teacher
they can be held only in the same room
they share students.
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