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Course Overview

Combinatorial Optimization, Methods and Models

CH and LS: overview

Working Environment and Solver Systems

Methods for the Analysis of Experimental Results

Construction Heuristics

Local Search: Components, Basic Algorithms

Local Search: Neighborhoods and Search Landscape

Efficient Local Search: Incremental Updates and Neighborhood Pruning

Stochastic Local Search & Metaheuristics
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Configuration Tools: F-race

o Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...
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Summary: Local Search Algorithms R o,
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. neighborhood relation AV, C S, x S,

3. evaluation function . : S —+ R

4. set of memory states M,

5. initialization function init : () — S, x M)
6. step function step: S; x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}



Recap.

Efficiency and Effectiveness

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast incremental evaluation (ie, delta evaluation)
B. neighborhood pruning

C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood



Single Machine Total Weighted Tardiness™ <=

Given: a set of n jobs {Ji,...,J,} to be processed on a single machine
and for each job J; a processing time p;, a weight w; and a due date d.

Task: Find a schedule that minimizes
the total weighted tardiness > 7, w; - T;
where T; = max{C; — d;,0} (C; completion time of job J;)

Example:
Job J1 J2 J3 J4 J5 Jﬁ
Processing Time 3 2 2 3 4 3
Due date 6 13 4 9 7 17
Weight 2 3 1 5 1 2
Sequence ¢ = J3, J1, Js5, Ju, J1, Jg

Job J3 J1 J5 J4 J2 J6

G 2 5 9 12 14 17

T; 0 o0 2 3 1 0
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Single Machine Total Weighted Tardiness"Problem

o Interchange: size (5) and O(|i — j|) evaluation each
o first-improvement: 7;, mx
pr; < pr,  for improvements, w; T; 4wy Ty must decrease because jobs

in mj,..., T can only increase their tardiness.
pr; > pr,  possible use of auxiliary data structure to speed up the com-
putation

o best-improvement: 7;, m
Pr; < Pr, for improvements, w; T; + wy Tx must decrease at least as
the best interchange found so far because jobs in 7}, ...,
can only increase their tardiness.
pr; > pr,  possible use of auxiliary data structure to speed up the com-
putation
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Single Machine Total Weighted Tardiness"Problem

o Interchange: size (5) and O(|i — j|) evaluation each
o first-improvement: 7;, mx
pr; < pr,  for improvements, w; T; 4wy Ty must decrease because jobs

in mj,..., T can only increase their tardiness.
pr; > pr,  possible use of auxiliary data structure to speed up the com-
putation

o best-improvement: 7;, m
Pr; < Pr, for improvements, w; T; + wy Tx must decrease at least as
the best interchange found so far because jobs in 7}, ...,
can only increase their tardiness.
pr; > pr,  possible use of auxiliary data structure to speed up the com-
putation

@ Swap: size n — 1 and O(1) evaluation each
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Single Machine Total Weighted Tardiness"Problem

o Interchange: size (5) and O(|i — j|) evaluation each

o first-improvement: 7;, mx
pr; < pr,  forimprovements, w; T; + wj T\ must decrease because jobs

in mj,..., T can only increase their tardiness.
pr; > pr,  possible use of auxiliary data structure to speed up the com-
putation

o best-improvement: 7;, 7,

Pr; < Pr, for improvements, w; T; + wy Tx must decrease at least as
the best interchange found so far because jobs in 7}, ...,
can only increase their tardiness.

pr; > pr,  possible use of auxiliary data structure to speed up the com-
putation

@ Swap: size n — 1 and O(1) evaluation each

o Insert: size (n—1)? and O(|/ — j|) evaluation each
But possible to speed up with systematic examination by means of
swaps: an insert is equivalent to |/ — j| swaps hence overall examination
takes O(n?)
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Local Search for the Traveling Salesman Froblem

@ k-exchange heuristics

e 2-opt
2.5-opt
Or-opt
3-opt

@ complex neighborhoods

Lin-Kernighan
Helsgaun's Lin-Kernighan
Dynasearch

ejection chains approach

Implementations exploit speed-up techniques

O

neighborhood pruning: fixed radius nearest neighborhood search
neighborhood lists: restrict exchanges to most interesting candidates
. don't look bits: focus perturbative search to “interesting” part
sophisticated data structures

19
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TSP data structures
Tour representation:

o reverse(a, b)

@ succ

@ prec

@ sequence(a,b,c) — check whether b is within a2 and b
Possible choices:

e |V/| < 1.000 array for 7 and 7!

o | V| < 1.000.000 two level tree

e |V] > 1.000.000 splay tree
Moreover static data structure:

@ priority lists

o k-d trees




Recap.

Look at implementation of local search for TSP by T. Stiitzle:

File: http://www.imada.sdu.dk/ “marco/DM811/Resources/ls.c

two_opt_b(tour); % best improvement, no speedup

two_opt_f(tour); % first improvement, no speedup

two_opt_ best(tour); % first improvement including speed—ups (dlbs, fixed radius near
neighbour searches, neughbourhood lists)

two_opt_first(tour); % best improvement including speed—ups (dlbs, fixed radius near
neighbour searches, neughbourhood lists)

three opt_first(tour); % first improvement

21
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Table 17.1 Cases for k-opt moves.

No. of Cases
1
4
20
148
1,358
15,104
198,144
2,998,656
10 51,290,496

R R T A TR T =

[Appelgate Bixby, Chvatal, Cook, 2006]
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Table 17.2 Computer-generated source code for k-opt moves.

770000

760000

750000

740000

Tour Length

730000

720000
2

Figure 17.1 k-opt on a 10,000-city Euclidean TSP.

No. of Lines

k
6
7
8

120,228
1,259,863
17,919,296
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P
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. . Recap
Quadratic Assighnment Problem Other COPs

o Given:
n units with a matrix F = [f;] € R"*" of flows between them and

n locations with a matrix D = [d,,] € R"*" of distances

o Task: Find the assignment o of units to locations that minimizes the
sum of product between flows and distances, ie,

[ f;dn' No(j
min > _ fidy(i)o)
iJ

Applications: hospital layout; keyboard layout

27
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Quadratic Programming Formulation

indices /, j for units and u, v for locations:

min Zi Zu ZJ Zv f;'jduvxiuxjv + (Z, Zu C,'UX,'u>
st. Y ixu=1 Yu

YoyXiw=1 Vi

x > 0 and integer Vi, u

PO

=

Largest instances solvable exactly n = 30

28



Example: QAP
0 4 3 2 1
4 0 3 2 1
D=|3 3 0 2 1 F =
2 2 2 01
1 1 1 1 0

The optimal solution is o = (1, 2,3,4,5), that is,
facility 1 is assigned to location 1,
facility 2 is assigned to location 2, etc.

The value of f(o) is 100.

WO RRO

OO

WO NN

O W ww
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[ R
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Delta evaluation

Evaluation of 2-exchange {r,s} can be done in O(n)

A(’lp!?‘! 5) = b”"" ) (a”bsfﬁs - a'ﬁr’!’r) + b"'s ) (a',b5’1f’v - a’ﬁr”b-i) +

bs"' ) (%w'}r}s - a"'{-r)s'}-"r) + bss ) (a"'f-r)r’}-"w - a'ﬁs’}r)s) +

D (Gur - (@, — Gy, ) + bks - (A, — Guyp,) +
k=1k#rs

bre - (Qy v — Gy,u) + Dsk - Gy, — Gygu )
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Other COPs

Example: Tabu Search for QAP
o Solution representation: permutation 7
o Initial Solution: randomly generated
@ Neighborhood: interchange
Ap: o(m) = {n'|m) = my for all k # {i,j} and 7} = m;, 7} = 7;}
o Tabu status: forbid ¢ that place back the items in the positions they
have already occupied in the last tt iterations (short term memory)

o Implementation details:
o compute f(7') — f(7) in O(n) or O(1) by storing the values all possible
previous moves.
e maintain a matrix [Tj] of size n x n and write the last time item / was
moved in location k plus tt
e 0 is tabu if it satisfies both:

® T; r(j = current iteration
® Tj x(jy = current iteration

31
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Example: Robust Tabu Search for QAP

o Aspiration criteria:

o allow forbidden § if it improves the last 7"

o select 0 if never chosen in the last A iterations (long term memory)

o Parameters: tt € [|0.9n], [1.1n + 4]] and A = 5n°

32



Recap
Other COPs

Example: Reactive Tabu Search for QAP

o Aspiration criteria:

o allow forbidden ¢ if it improves the last 7"

o Tabu Tenure
e maintain a hash table (or function) to record previously visited solutions

e increase tt by a factor anc(= 1.1) if the current solution was previously
visited

o decrease tt by a factor agec(= 0.9) if tt not changed in the last sttc
iterations or all moves are tabu

@ Trigger escape mechanism if a solution is visited more than nr(= 3)
times

@ Escape mechanism = 1+ (1 + r) - ma/2 random moves

33
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Linear Ordering Problem Other coPs

Input: an n x n matrix C

Task: Find a permutation 7 of the column and row indices {1,..., n} such
that the value

n n
(=303 e
i=1 j=i+1

is maximized. In other terms, find a permutation of the columns and rows of
C such that the sum of the elements in the upper triangle is maximized.

35
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Consider as an example the (5,5)-matrix:

0 16 11 15 7
21 0 14 15 9
H=126 23 0 26 12
22 22 11 0 13
30 28 25 24 O

m=(1,2,3,4,5). The sum of its superdiagonal elements is 138.
7 =(5,3,4,2,1) i.e,, Hi» becomes H,(1)~(2) = Hsa4 in the permuted matrix.
Thus the optimal triangulation of H is

0 25 24 28 30
12 0 26 23 26
H*= {13 11 0 22 22
9 14 15 0 21
7 11 15 16 O

Now the sum of superdiagonal elements is 247.



LOP Applications: Graph Theory Other coPs

Definition: A directed graph (or digraph) D consists of a non-empty finite
set V(D) of distinct vertices and a finite set A of ordered pairs of distinct
vertices called arcs.
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LOP Applications: Graph Theory Other CoPs

Definition: A directed graph (or digraph) D consists of a non-empty finite
set V(D) of distinct vertices and a finite set A of ordered pairs of distinct
vertices called arcs.

Feedback arc set problem (FASP)

Input: A directed graph D = (V/, A), where V = {1,2,...,n}, and arc
weights ¢;; for all [ij] € A

Task: Find a permutation 71,7, ... 7, of V (that is, a linear ordering of V)
such that the total costs of those arcs [7;7;] where j >/ (that is, the arcs
that point backwards in the ordering)

Fm)=>_ > cum

i=1 j=i+1

is minimized.
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LOP Applications: Graph Theory (2) Other coPs

Definition: A linear ordering of a finite set of vertices V = {1,2,... n} is a
bijective mapping (permutation) 7 : {1,2,...,n} — V. For u,v € V, we say
that v is “before” v if 71 (u) < 7 1(v) (7 (i) = pos.(i)).
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LOP Applications: Graph Theory (2) Other coPs

Definition: A linear ordering of a finite set of vertices V = {1,2,... n} is a
bijective mapping (permutation) 7 : {1,2,...,n} — V. For u,v € V, we say
that v is “before” v if 71 (u) < 7 1(v) (7 (i) = pos.(i)).

Definition: A digraph D is complete if, for every pair x, y of distinct vertices
of D both xy and yx arcs are in D.
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LOP Applications: Graph Theory (2) Other coPs

Definition: A linear ordering of a finite set of vertices V = {1,2,... n} is a
bijective mapping (permutation) 7 : {1,2,...,n} — V. For u,v € V, we say
that v is “before” v if 71 (u) < 7 1(v) (7 (i) = pos.(i)).

Definition: A digraph D is complete if, for every pair x, y of distinct vertices

of D both xy and yx arcs are in D.

Definition: An oriented graph is a digraph with no cycle of length two. A
tournament is an oriented graph where every pair of distinct vertices are
adjacent.

38



LOP Applications: Graph Theory (2) Other COPs

Definition: A linear ordering of a finite set of vertices V = {1,2,... n} is a
bijective mapping (permutation) 7 : {1,2,...,n} — V. For u,v € V, we say
that v is “before” v if 71 (u) < 7 1(v) (7 (i) = pos.(i)).

Definition: A digraph D is complete if, for every pair x, y of distinct vertices
of D both xy and yx arcs are in D.

Definition: An oriented graph is a digraph with no cycle of length two. A
tournament is an oriented graph where every pair of distinct vertices are
adjacent.

Remark: Given a digraph D = (V/, A) and a linear ordering of the vertices V/,
the arc set £ = {[uv]|7!(u) < 7 *(v)} forms an acyclic tournament on V.
Similarly, an acyclic tournament T = (V/, E) induces a linear ordering of V.
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Definition: The cost of a linear ordering is expressed by

g CUV

T (u)<m—1(v)

where the costs ¢, are the costs associated to the arcs.



Definition: The cost of a linear ordering is expressed by

>
7= (u)<m—1(v)

where the costs ¢, are the costs associated to the arcs.

Linear Ordering Problem

Input: Given a complete digraph D = (V. A) with arc weights ¢;; for all
jeA

Task: Find an acyclic tournament 7 = (V, T) in D such that

A(T)=2

jeT

is maximized.



. - Recap
Aggregation of Individual Preferences  otercor

Kemeny’s problem. Suppose that there are m persons and each person 7,
i =1,...,m, has ranked n objects by giving a linear ordering T; of the
objects. Which common linear ordering aggregates the individual orderings in

the best possible way?

40



Aggregation of Individual Preferences  owecor-

Kemeny’s problem. Suppose that there are m persons and each person 7,

i =1,...,m, has ranked n objects by giving a linear ordering T; of the
objects. Which common linear ordering aggregates the individual orderings in
the best possible way?

~ linear ordering problem by setting c;; = number of persons preferring
object O; to object O;

40



LOP Applications: Economics Other COPs

Input-output analysis (Leontief, Nobel prize)

The economy of a state is divided into n sectors, and an n x n input-output
matrix C is constructed where the entry ¢;; denotes the transactions from
sector / to sector j in that year.

Triangulation (ie, solving associated LOP) allows identification of important
inter-industry relations in an economy (from primary stage sectors via the
manufacturing sectors to the sectors of final demand) and consequent
comparisons between different countries.

Depicts dependencies between the different branches of an economy

41



Ranking in Sports Tournaments

Recap
Other COPs

Hjj = number of goals which were scored by team / against team .

Table 1.1 Premier League 2006/2007 (left: official, right: triangulated)

I Manchester United
2 Chelsea

3 Liverpool

4 Arsenal

5 Tottenham Hotspur
6 Everton

7 Bolton Wanderers
8 Reading

9 Portsmouth
10 Blackburm Rovers
11 Aston Villa

12 Middlesborough
13 Newcastle United
14 Manchester City
15 West Ham United
16 Fulham

17 Wigan Athletic

18 Sheffield United
19 Charlton Athletic
20 Watford

1 Chelsea

2 Arsenal

3 Manchester United
4 Everton

5 Portsmouth

6 Liverpool

7 Reading

8 Tottenham Hotspur
9 Aston Villa

10 Blackbum Rovers
11 Middlesborough
12 Charlton Athletic
13 Bolton Wanderers
14 Wigan Athletic

15 Manchester City
16 Sheffield United
17 Fulham

18 Newcastle United
19 Watford

20 West Ham United

R. Marti, G. Reinelt, R. Marti and G. Reinelt. The Linear Ordering Problem,
Introduction. Springer Berlin Heidelberg, 2011, 1-15
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Knapsack, Bin Packing, Cutting Stock o cor.

Knapsack
Given: a knapsack with maximum weight // and a set of n items

{1,2,...,n}, with each item j associated to a profit p; and to a weight w;.

Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W.

a4



Knapsack, Bin Packing, Cutting Stock o cor.

Knapsack

Given: a knapsack with maximum weight // and a set of n items
{1,2,...,n}, with each item j associated to a profit p; and to a weight w;.

Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W.

One dimensional Bin Packing
Given: A set L = (a1, an,...,a,) of items, each with a size s(a;) € (0, 1] and

an unlimited number of unit-capacity bins By, Bo, ..., Bp,.

Task: Pack all the items into a minimum number of unit-capacity bins
By, By, ..., Bn.

a4



Knapsack, Bin Packing, Cutting Stock o cor.

Knapsack

Given: a knapsack with maximum weight // and a set of n items
{1,2,...,n}, with each item j associated to a profit p; and to a weight w;.

Task: Find the subset of items of maximal total profit and whose total
weight is not greater than W.

One dimensional Bin Packing

Given: A set L = (a1, an,...,a,) of items, each with a size s(a;) € (0, 1] and

an unlimited number of unit-capacity bins By, Bo, ..., Bp,.

Task: Pack all the items into a minimum number of unit-capacity bins
By, By, ..., Bn.

Cutting stock

Each item has a profit p; > 0 and a number of times it must appear a;.
The task is to select a subset of items to be packed in a single finite bin that
maximizes the total selected profit.




Bin Packing

Cutting Stock




Heuristics for Bin Packing

@ Construction Heuristics
o Best Fit Decreasing (BFD)

o First Fit Decreasing (FFD)

Cmax(FFD) <

11
9

Recap
Other COPs

Cmax(OPT) + ¢

46



Other COPs

Heuristics for Bin Packing

@ Construction Heuristics
o Best Fit Decreasing (BFD)

o First Fit Decreasing (FFD) Cmax(FFD) < %CmaX(OPT) + g

o Local Search: [Alvim and Aloise and Glover and Ribeiro, 1999]
Step 1: remove one bin and redistribute items by BFD
Step 2: if infeasible, re-make feasible by redistributing items for

pairs of bins, such that their total weights becomes equal
(number partitioning problem)

46
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[Levine and Ducatelle, 2004]

The solution before local search (the bin capacity is 10):
The bins: |333]621|52|43|72|54]

Open the two smallest bins:
Remaining: |333|621|72|54]
Free items: 5,4,3,2

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free:

First bin: 333—352 newfree: 4,3,3,3
Second bin: 621 —64 new free: 3,3. 3,2, 1
Third bin: 72373 new free: 3,3, 2,2, 1
Fourth bin: 5 4 stays the same

Reinsert the free items using FFD:
Fourth bin: 54—541
Make new bin: 3322
Final solution:  [352|64|73|541(3322]

Repeat the procedure: no further improvement possible
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Two-Dimensional Packing Problems Other coPs

Two dimensional bin packing

Given: A set L = (a1,an,...,a,) of n rectangular items, each with a width
w; and a height h; and an unlimited number of identical rectangular bins of
width W and height H.

Task: Allocate all the items into a minimum number of bins, such that the

original orientation is respected (no rotation of the items is allowed).

48



Two-Dimensional Packing Problems Other coPs

Two dimensional bin packing

Given: A set L = (a1,an,...,a,) of n rectangular items, each with a width
w; and a height h; and an unlimited number of identical rectangular bins of
width W and height H.

Task: Allocate all the items into a minimum number of bins, such that the

original orientation is respected (no rotation of the items is allowed).

Two dimensional strip packing

Given: A set L = (a1, ap,...,a,) of n rectangular items, each with a width
w; and a height h; and a bin of width W and infinite height (a strip).

Task: Allocate all the items into the strip by minimizing the used height and
such that the original orientation is respected (no rotation of the items is
allowed).

48
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Two dimensional bin packing

Given: A set L = (a1,an,...,a,) of n rectangular items, each with a width
w; and a height h; and an unlimited number of identical rectangular bins of
width W and height H.

Task: Allocate all the items into a minimum number of bins, such that the

original orientation is respected (no rotation of the items is allowed).

Two dimensional strip packing

Given: A set L = (a1, ap,...,a,) of n rectangular items, each with a width
w; and a height h; and a bin of width W and infinite height (a strip).

Task: Allocate all the items into the strip by minimizing the used height and
such that the original orientation is respected (no rotation of the items is
allowed).

Two dimensional cutting stock

Each item has a profit p; > 0 and the task is to select a subset of items to be
packed in a single finite bin that maximizes the total selected profit.

v
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Three dimensional

Given: A set L = (a1, ap,...,a,) of rectangular boxes, each with a width w;,

height h; and depth d; and an unlimited number of three-dimensional bins
Bi, B>, ..., B, of width W, height H, and depth D.

Task: Pack all the boxes into a minimum number of bins, such that the
original orientation is respected (no rotation of the boxes is allowed)

49



List of Problems Other COPs

See http://www.nada.kth.se/ viggo/problemlist/
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School scheduling Other cOPs

Input: a finite set of time periods and courses with assigned: a teacher, a set
of attending students and a suitable room.

Task: Produce weekly timetable of courses, that is: assign a time period of
the week (typically one hour) to every course such that courses are assigned
to different time periods if:

o they are taught by the same teacher

@ they can be held only in the same room

o they share students.
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