DM811
 Heuristics for Combinatorial Optimization

Lecture 16
 Examples

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Course Overview

\checkmark Combinatorial Optimization, Methods and Models
$\checkmark \mathrm{CH}$ and LS: overview
\checkmark Working Environment and Solver Systems
\checkmark Methods for the Analysis of Experimental Results
\checkmark Construction Heuristics
\checkmark Local Search: Components, Basic Algorithms
\checkmark Local Search: Neighborhoods and Search Landscape
\checkmark Efficient Local Search: Incremental Updates and Neighborhood Pruning
\checkmark Stochastic Local Search \& Metaheuristics
\checkmark Configuration Tools: F-race

- Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree, Unrelated Parallel Machines, p-median, set covering, QAP, ...

Outline

1. Recap.
2. Other Combinatorial Optimization Problems

Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing

Outline

1. Recap.
2. Other Combinatorial Optimization Problems

Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing

For given problem instance π :

1. search space S_{π}
2. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
3. evaluation function $f_{\pi}: S \rightarrow \mathbf{R}$
4. set of memory states M_{π}
5. initialization function init: $\left.\emptyset \rightarrow S_{\pi} \times M_{\pi}\right)$
6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$
7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow\{\top, \perp\}$

Efficiency and Effectiveness

After implementation and test of the above components, improvements in efficiency (ie, computation time) can be achieved by:
A. fast incremental evaluation (ie, delta evaluation)
B. neighborhood pruning
C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:
D. application of a metaheuristic
E. definition of a larger neighborhood

Single Machine Total Weighted TardinesŞitaic cops

Given: a set of n jobs $\left\{J_{1}, \ldots, J_{n}\right\}$ to be processed on a single machine and for each job J_{i} a processing time p_{i}, a weight w_{i} and a due date d_{i}.

Task: Find a schedule that minimizes the total weighted tardiness $\sum_{i=1}^{n} w_{i} \cdot T_{i}$ where $T_{i}=\max \left\{C_{i}-d_{i}, 0\right\}\left(C_{i}\right.$ completion time of job $\left.J_{i}\right)$

Example:

Job		J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}
Processing Time		3	2	2	3	4	3
Due date		6	13	4	9	7	17
Weight		2	3	1	5	1	2
Sequence $\phi=J_{3}, J_{1}, J_{5}, J_{4}, J_{1}, J_{6}$							
Job	J_{3}	J_{1}	J_{5}	J_{4}	J_{2}	J_{6}	
C_{i}	2	5	9	12	14	17	
T_{i}	0	0	2	3	1	0	
$w_{i} \cdot T_{i}$	0	0	2	15	3	0	

Single Machine Total Weighted Tardinesss ${ }^{\text {Resp Problem }}$

- Interchange: size $\binom{n}{2}$ and $O(|i-j|)$ evaluation each
- first-improvement: π_{j}, π_{k}
$p_{\pi_{j}} \leq p_{\pi_{k}} \quad$ for improvements, $w_{j} T_{j}+w_{k} T_{k}$ must decrease because jobs in π_{j}, \ldots, π_{k} can only increase their tardiness.
$p_{\pi_{j}} \geq p_{\pi_{k}} \quad$ possible use of auxiliary data structure to speed up the computation
- best-improvement: π_{j}, π_{k}
$p_{\pi_{j}} \leq p_{\pi_{k}} \quad$ for improvements, $w_{j} T_{j}+w_{k} T_{k}$ must decrease at least as the best interchange found so far because jobs in π_{j}, \ldots, π_{k} can only increase their tardiness.
$p_{\pi_{j}} \geq p_{\pi_{k}} \quad$ possible use of auxiliary data structure to speed up the computation

Single Machine Total Weighted Tardinesss ${ }^{\text {Resp Problem }}$

- Interchange: size $\binom{n}{2}$ and $O(|i-j|)$ evaluation each
- first-improvement: π_{j}, π_{k}
$p_{\pi_{j}} \leq p_{\pi_{k}} \quad$ for improvements, $w_{j} T_{j}+w_{k} T_{k}$ must decrease because jobs in π_{j}, \ldots, π_{k} can only increase their tardiness.
$p_{\pi_{j}} \geq p_{\pi_{k}} \quad$ possible use of auxiliary data structure to speed up the computation
- best-improvement: π_{j}, π_{k}
$p_{\pi_{j}} \leq p_{\pi_{k}} \quad$ for improvements, $w_{j} T_{j}+w_{k} T_{k}$ must decrease at least as the best interchange found so far because jobs in π_{j}, \ldots, π_{k} can only increase their tardiness.
$p_{\pi_{j}} \geq p_{\pi_{k}} \quad$ possible use of auxiliary data structure to speed up the computation
- Swap: size $n-1$ and $O(1)$ evaluation each

Single Machine Total Weighted Tardinesss ${ }^{\text {Resp Problem }}$

- Interchange: size $\binom{n}{2}$ and $O(|i-j|)$ evaluation each
- first-improvement: π_{j}, π_{k}
$p_{\pi_{j}} \leq p_{\pi_{k}} \quad$ for improvements, $w_{j} T_{j}+w_{k} T_{k}$ must decrease because jobs in π_{j}, \ldots, π_{k} can only increase their tardiness.
$p_{\pi_{j}} \geq p_{\pi_{k}} \quad$ possible use of auxiliary data structure to speed up the computation
- best-improvement: π_{j}, π_{k}
$p_{\pi_{j}} \leq p_{\pi_{k}} \quad$ for improvements, $w_{j} T_{j}+w_{k} T_{k}$ must decrease at least as the best interchange found so far because jobs in π_{j}, \ldots, π_{k} can only increase their tardiness.
$p_{\pi_{j}} \geq p_{\pi_{k}} \quad$ possible use of auxiliary data structure to speed up the computation
- Swap: size $n-1$ and $O(1)$ evaluation each
- Insert: size $(n-1)^{2}$ and $O(|i-j|)$ evaluation each But possible to speed up with systematic examination by means of swaps: an insert is equivalent to $|i-j|$ swaps hence overall examination takes $O\left(n^{2}\right)$

Local Search for the Traveling Salesman ${ }^{\text {sppoblem }}$

- k-exchange heuristics
- 2-opt
- 2.5-opt
- Or-opt
- 3-opt
- complex neighborhoods
- Lin-Kernighan
- Helsgaun's Lin-Kernighan
- Dynasearch
- ejection chains approach

Implementations exploit speed-up techniques

1. neighborhood pruning: fixed radius nearest neighborhood search
2. neighborhood lists: restrict exchanges to most interesting candidates
3. don't look bits: focus perturbative search to "interesting" part
4. sophisticated data structures

TSP data structures
Tour representation:

- reverse(a, b)
- succ
- prec
- sequence (a, b, c) - check whether b is within a and b

Possible choices:

- $|V|<1.000$ array for π and π^{-1}
- $|V|<1.000 .000$ two level tree
- $|V|>1.000 .000$ splay tree

Moreover static data structure:

- priority lists
- k-d trees

Look at implementation of local search for TSP by T. Stützle:
File: http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c

```
two_opt_b(tour); % best improvement, no speedup
two_opt_f(tour); % first improvement, no speedup
two_opt_best(tour); % first improvement including speed-ups (dlbs, fixed radius near
    neighbour searches, neughbourhood lists)
two_opt first(tour); % best improvement including speed-ups (dlbs, fixed radius near
    neighbour searches, neughbourhood lists)
three_opt_first(tour); % first improvement
```

Table 17.1 Cases for k-opt moves.

k	No. of Cases
2	1
3	4
4	20
5	148
6	1,358
7	15,104
8	198,144
9	$2,998,656$
$\mathbf{1 0}$	$51,290,496$

[Appelgate Bixby, Chvátal, Cook, 2006]

Table 17.2 Computer-generated source code for k-opt moves.

k	No. of Lines
6	120,228
7	$1,259,863$
8	$17,919,296$

Figure $17.1 k$-opt on a 10,000 -city Euclidean TSP.

Outline

1. Recap.
2. Other Combinatorial Optimization Problems

Quadratic Assignment Problem School Scheduling Linear Ordering Bin Packing

Outline

1. Recap.
2. Other Combinatorial Optimization Problems

Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing

Quadratic Assignment Problem

- Given:
n units with a matrix $F=\left[f_{i j}\right] \in \mathbf{R}^{n \times n}$ of flows between them and n locations with a matrix $D=\left[d_{u v}\right] \in \mathbf{R}^{n \times n}$ of distances
- Task: Find the assignment σ of units to locations that minimizes the sum of product between flows and distances, ie,

$$
\min _{\sigma \in \Sigma} \sum_{i, j} f_{i j} d_{\sigma(i) \sigma(j)}
$$

Applications: hospital layout; keyboard layout

Quadratic Programming Formulation

indices i, j for units and u, v for locations:

$$
\begin{aligned}
\min & \sum_{i} \sum_{u} \sum_{j} \sum_{v} f_{i j} d_{u v} x_{i u} x_{j v}+\left(\sum_{i} \sum_{u} c_{i u} x_{i u}\right) \\
\mathrm{s.t.} & \sum_{i} x_{i u}=1 \quad \forall u \\
& \sum_{u} x_{i u}=1 \quad \forall i \\
& x \geq 0 \text { and integer } \forall i, u
\end{aligned}
$$

Largest instances solvable exactly $n=30$

Example: QAP

$$
D=\left(\begin{array}{lllll}
0 & 4 & 3 & 2 & 1 \\
4 & 0 & 3 & 2 & 1 \\
3 & 3 & 0 & 2 & 1 \\
2 & 2 & 2 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \quad F=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 2 & 3 & 4 \\
2 & 2 & 0 & 3 & 4 \\
3 & 3 & 3 & 0 & 4 \\
4 & 4 & 4 & 4 & 0
\end{array}\right)
$$

The optimal solution is $\sigma=(1,2,3,4,5)$, that is, facility 1 is assigned to location 1 , facility 2 is assigned to location 2, etc.
The value of $f(\sigma)$ is 100 .

Delta evaluation

Evaluation of 2-exchange $\{r, s\}$ can be done in $O(n)$

$$
\begin{array}{r}
\Delta(\psi, r, s)=b_{r r} \cdot\left(a_{\psi_{s} \psi_{s}}-a_{\psi_{r} \psi_{r}}\right)+b_{r s} \cdot\left(a_{\psi_{s} \psi_{r}}-a_{\psi_{r} \psi_{s}}\right)+ \\
b_{s r} \cdot\left(a_{\psi_{r} \psi_{s}}-a_{\psi_{s} \psi_{r}}\right)+b_{s s} \cdot\left(a_{\psi_{r} \psi_{r}}-a_{\psi_{s} \psi_{s}}\right)+ \\
\sum_{k=1, k \neq r, s}^{n}\left(b_{k r} \cdot\left(a_{\psi_{k} \psi_{s}}-a_{\psi_{k} \psi_{r}}\right)+b_{k s} \cdot\left(a_{\psi_{k} \psi_{r}}-a_{\psi_{k} \psi_{s}}\right)+\right. \\
\left.b_{r k} \cdot\left(a_{\psi_{s} \psi_{k}}-a_{\psi_{r} \psi_{k}}\right)+b_{s k} \cdot\left(a_{\psi_{r} \psi_{k}}-a_{\psi_{s} \psi_{k}}\right)\right)
\end{array}
$$

Example: Tabu Search for QAP

- Solution representation: permutation π
- Initial Solution: randomly generated
- Neighborhood: interchange
$\Delta_{I}: \quad \delta(\pi)=\left\{\pi^{\prime} \mid \pi_{k}^{\prime}=\pi_{k}\right.$ for all $k \neq\{i, j\}$ and $\left.\pi_{i}^{\prime}=\pi_{j}, \pi_{j}^{\prime}=\pi_{i}\right\}$
- Tabu status: forbid δ that place back the items in the positions they have already occupied in the last $t t$ iterations (short term memory)
- Implementation details:
- compute $f\left(\pi^{\prime}\right)-f(\pi)$ in $O(n)$ or $O(1)$ by storing the values all possible previous moves.
- maintain a matrix $\left[T_{i j}\right]$ of size $n \times n$ and write the last time item i was moved in location k plus $t t$
- δ is tabu if it satisfies both:
- $T_{i, \pi(j)} \geq$ current iteration
- $T_{j, \pi(i)} \geq$ current iteration

Example: Robust Tabu Search for QAP

- Aspiration criteria:
- allow forbidden δ if it improves the last π^{*}
- select δ if never chosen in the last A iterations (long term memory)
- Parameters: $\mathrm{tt} \in[\lfloor 0.9 n\rfloor,\lceil 1.1 n+4\rceil]$ and $A=5 n^{2}$

Example: Reactive Tabu Search for QAP

- Aspiration criteria:
- allow forbidden δ if it improves the last π^{*}
- Tabu Tenure
- maintain a hash table (or function) to record previously visited solutions
- increase tt by a factor $\alpha_{\text {inc }}(=1.1)$ if the current solution was previously visited
- decrease tt by a factor $\alpha_{\text {dec }}(=0.9)$ if tt not changed in the last sttc iterations or all moves are tabu
- Trigger escape mechanism if a solution is visited more than $\operatorname{nr}(=3)$ times
- Escape mechanism $=1+(1+r) \cdot m a / 2$ random moves

Outline

2. Other Combinatorial Optimization Problems Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing

Linear Ordering Problem

Input: an $n \times n$ matrix C
Task: Find a permutation π of the column and row indices $\{1, \ldots, n\}$ such that the value

$$
f(\pi)=\sum_{i=1}^{n} \sum_{j=i+1}^{n} c_{\pi_{i} \pi_{j}}
$$

is maximized. In other terms, find a permutation of the columns and rows of C such that the sum of the elements in the upper triangle is maximized.

Consider as an example the (5,5)-matrix:

$$
H=\left[\begin{array}{ccccc}
0 & 16 & 11 & 15 & 7 \\
21 & 0 & 14 & 15 & 9 \\
26 & 23 & 0 & 26 & 12 \\
22 & 22 & 11 & 0 & 13 \\
30 & 28 & 25 & 24 & 0
\end{array}\right]
$$

$\pi=(1,2,3,4,5)$. The sum of its superdiagonal elements is 138 .
$\pi=(5,3,4,2,1)$ i.e., H_{12} becomes $H_{\pi(1) \pi(2)}=H_{54}$ in the permuted matrix.
Thus the optimal triangulation of H is

$$
H^{*}=\left[\begin{array}{ccccc}
0 & 25 & 24 & 28 & 30 \\
12 & 0 & 26 & 23 & 26 \\
13 & 11 & 0 & 22 & 22 \\
9 & 14 & 15 & 0 & 21 \\
7 & 11 & 15 & 16 & 0
\end{array}\right]
$$

Now the sum of superdiagonal elements is 247 .

LOP Applications: Graph Theory

Definition: A directed graph (or digraph) D consists of a non-empty finite set $V(D)$ of distinct vertices and a finite set A of ordered pairs of distinct vertices called arcs.

LOP Applications: Graph Theory

Definition: A directed graph (or digraph) D consists of a non-empty finite set $V(D)$ of distinct vertices and a finite set A of ordered pairs of distinct vertices called arcs.

Feedback arc set problem (FASP)

Input: A directed graph $D=(V, A)$, where $V=\{1,2, \ldots, n\}$, and arc weights $c_{i j}$ for all $[i j] \in A$
Task: Find a permutation $\pi_{1}, \pi_{2}, \ldots \pi_{n}$ of V (that is, a linear ordering of V) such that the total costs of those arcs $\left[\pi_{j} \pi_{i}\right]$ where $j>i$ (that is, the arcs that point backwards in the ordering)

$$
f(\pi)=\sum_{i=1}^{n} \sum_{j=i+1}^{n} c_{\pi_{j} \pi_{i}}
$$

is minimized.

LOP Applications: Graph Theory (2) $\begin{gathered}\text { Rachap cops } \\ \text { Cithe cop }\end{gathered}$

Definition: A linear ordering of a finite set of vertices $V=\{1,2, \ldots, n\}$ is a bijective mapping (permutation) $\pi:\{1,2, \ldots, n\} \rightarrow V$. For $u, v \in V$, we say that u is "before" v if $\pi^{-1}(u)<\pi^{-1}(v)\left(\pi^{-1}(i)=\operatorname{pos}_{\pi}(i)\right)$.

LOP Applications: Graph Theory (2) $\begin{gathered}\text { Rachap cops } \\ \text { Cithe cop }\end{gathered}$

Definition: A linear ordering of a finite set of vertices $V=\{1,2, \ldots, n\}$ is a bijective mapping (permutation) $\pi:\{1,2, \ldots, n\} \rightarrow V$. For $u, v \in V$, we say that u is "before" v if $\pi^{-1}(u)<\pi^{-1}(v)\left(\pi^{-1}(i)=\operatorname{pos}_{\pi}(i)\right)$.
Definition: A digraph D is complete if, for every pair x, y of distinct vertices of D both $x y$ and $y x$ arcs are in D.

LOP Applications: Graph Theory (2) $\begin{gathered}\text { Recape cops } \\ \text { cothe cois }\end{gathered}$

Definition: A linear ordering of a finite set of vertices $V=\{1,2, \ldots, n\}$ is a bijective mapping (permutation) $\pi:\{1,2, \ldots, n\} \rightarrow V$. For $u, v \in V$, we say that u is "before" v if $\pi^{-1}(u)<\pi^{-1}(v)\left(\pi^{-1}(i)=\operatorname{pos}_{\pi}(i)\right)$.
Definition: A digraph D is complete if, for every pair x, y of distinct vertices of D both $x y$ and $y x$ arcs are in D.

Definition: An oriented graph is a digraph with no cycle of length two. A tournament is an oriented graph where every pair of distinct vertices are adjacent.

LOP Applications: Graph Theory (2)

Definition: A linear ordering of a finite set of vertices $V=\{1,2, \ldots, n\}$ is a bijective mapping (permutation) $\pi:\{1,2, \ldots, n\} \rightarrow V$. For $u, v \in V$, we say that u is "before" v if $\pi^{-1}(u)<\pi^{-1}(v)\left(\pi^{-1}(i)=\operatorname{pos}_{\pi}(i)\right)$.
Definition: A digraph D is complete if, for every pair x, y of distinct vertices of D both $x y$ and $y x$ arcs are in D.

Definition: An oriented graph is a digraph with no cycle of length two. A tournament is an oriented graph where every pair of distinct vertices are adjacent.

Remark: Given a digraph $D=(V, A)$ and a linear ordering of the vertices V, the arc set $E=\left\{[u v] \mid \pi^{-1}(u)<\pi^{-1}(v)\right\}$ forms an acyclic tournament on V. Similarly, an acyclic tournament $T=(V, E)$ induces a linear ordering of V.

Definition: The cost of a linear ordering is expressed by

$$
\sum_{\pi^{-1}(u)<\pi^{-1}(v)} c_{u v}
$$

where the costs $c_{u v}$ are the costs associated to the arcs.

Definition: The cost of a linear ordering is expressed by

$$
\sum_{\pi^{-1}(u)<\pi^{-1}(v)} c_{u v}
$$

where the costs $c_{u v}$ are the costs associated to the arcs.

Linear Ordering Problem

Input: Given a complete digraph $D=(V, A)$ with arc weights $c_{i j}$ for all $i j \in A$

Task: Find an acyclic tournament $T=(V, T)$ in D such that

$$
f(T)=\sum_{i j \in T} c_{i j}
$$

is maximized.

Aggregation of Individual Preferences

Kemeny's problem. Suppose that there are m persons and each person i, $i=1, \ldots, m$, has ranked n objects by giving a linear ordering T_{i} of the objects. Which common linear ordering aggregates the individual orderings in the best possible way?

Aggregation of Individual Preferences

Kemeny's problem. Suppose that there are m persons and each person i, $i=1, \ldots, m$, has ranked n objects by giving a linear ordering T_{i} of the objects. Which common linear ordering aggregates the individual orderings in the best possible way?
\rightsquigarrow linear ordering problem by setting $c_{i j}=$ number of persons preferring object O_{i} to object O_{j}

LOP Applications: Economics

Input-output analysis (Leontief, Nobel prize)

The economy of a state is divided into n sectors, and an $n \times n$ input-output matrix C is constructed where the entry $c_{i j}$ denotes the transactions from sector i to sector j in that year.

Triangulation (ie, solving associated LOP) allows identification of important inter-industry relations in an economy (from primary stage sectors via the manufacturing sectors to the sectors of final demand) and consequent comparisons between different countries.

Depicts dependencies between the different branches of an economy

Ranking in Sports Tournaments

$H_{i j}=$ number of goals which were scored by team i against team j.

Table 1.1 Premier League 2006/2007 (left: official, right: triangulated)
1 Manchester United 1 Chelsea

2 Chelsea
3 Liverpool
4 Arsenal
5 Tottenham Hotspur
6 Everton
7 Bolton Wanderers
8 Reading
9 Portsmouth
10 Blackburn Rovers
11 Aston Villa
12 Middlesborough
13 Newcastle United
14 Manchester City
15 West Ham United
16 Fulham
17 Wigan Athletic
18 Sheffield United
19 Charlton Athletic
20 Watford

2 Arsenal
3 Manchester United
4 Everton
5 Portsmouth
6 Liverpool
7 Reading
8 Tottenham Hotspur
9 Aston Villa
10 Blackburn Rovers
11 Middlesborough
12 Charlton Athletic
13 Bolton Wanderers
14 Wigan Athletic
15 Manchester City
16 Sheffield United
17 Fulham
18 Newcastle United
19 Watford
20 West Ham United

Outline

2. Other Combinatorial Optimization Problems

Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing

Knapsack, Bin Packing, Cutting Stock $\begin{gathered}\text { Recaip cops } \\ \text { cothe coin }\end{gathered}$

Knapsack

Given: a knapsack with maximum weight W and a set of n items
$\{1,2, \ldots, n\}$, with each item j associated to a profit p_{j} and to a weight w_{j}.
Task: Find the subset of items of maximal total profit and whose total weight is not greater than W.

Knapsack, Bin Packing, Cutting Stock $\begin{gathered}\text { Recape cops } \\ \text { cothe coin }\end{gathered}$

Knapsack
Given: a knapsack with maximum weight W and a set of n items
$\{1,2, \ldots, n\}$, with each item j associated to a profit p_{j} and to a weight w_{j}.
Task: Find the subset of items of maximal total profit and whose total weight is not greater than W.

One dimensional Bin Packing
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of items, each with a size $s\left(a_{i}\right) \in(0,1]$ and an unlimited number of unit-capacity bins $B_{1}, B_{2}, \ldots, B_{m}$.

Task: Pack all the items into a minimum number of unit-capacity bins $B_{1}, B_{2}, \ldots, B_{m}$.

Knapsack, Bin Packing, Cutting Stock $\begin{gathered}\text { Ractap cops } \\ \text { Cith cop }\end{gathered}$

Knapsack

Given: a knapsack with maximum weight W and a set of n items
$\{1,2, \ldots, n\}$, with each item j associated to a profit p_{j} and to a weight w_{j}.

Task: Find the subset of items of maximal total profit and whose total weight is not greater than W.

One dimensional Bin Packing
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of items, each with a size $s\left(a_{i}\right) \in(0,1]$ and an unlimited number of unit-capacity bins $B_{1}, B_{2}, \ldots, B_{m}$.

Task: Pack all the items into a minimum number of unit-capacity bins $B_{1}, B_{2}, \ldots, B_{m}$.

Cutting stock
Each item has a profit $p_{j}>0$ and a number of times it must appear a_{i}. The task is to select a subset of items to be packed in a single finite bin that maximizes the total selected profit.

Bin Packing

Cutting Stock

	$\stackrel{1120}{1}$	$\stackrel{2240}{3361}$	$\stackrel{4480}{1}$	5600 mm
2 x ,	1820	1820	1820	
3x +	1380	2150	1930	
12x \cdot	1380	2150	2050	
7 x .	1380	2100	2100	
12x.	2200	1820	1560	
8 x .	2200	1520	1880	
$1 \times$	1520	1930	2150	
16x	1520	1930	2140	
10x ,	1710	2000	1880	
2 x ,	1710	1710	2150	

Heuristics for Bin Packing

- Construction Heuristics
- Best Fit Decreasing (BFD)
- First Fit Decreasing (FFD)

$$
C_{\max }(F F D) \leq \frac{11}{9} C_{\max }(O P T)+\frac{6}{9}
$$

Heuristics for Bin Packing

- Construction Heuristics
- Best Fit Decreasing (BFD)
- First Fit Decreasing (FFD)

$$
C_{\max }(F F D) \leq \frac{11}{9} C_{\max }(O P T)+\frac{6}{9}
$$

- Local Search:
[Alvim and Aloise and Glover and Ribeiro, 1999]
Step 1: remove one bin and redistribute items by BFD
Step 2: if infeasible, re-make feasible by redistributing items for pairs of bins, such that their total weights becomes equal (number partitioning problem)
[Levine and Ducatelle, 2004]
The solution before local search (the bin capacity is 10):
The bins: $\quad|333| 621|52| 43|72| 54 \mid$
Open the two smallest bins:
Remaining: $\quad|333| 621|72| 54 \mid$
Free items: $\quad 5,4,3,2$

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current by 1 free:
First bin: $\quad 333 \rightarrow 352$ new free: $4,3,3,3$
Second bin: $\quad 621 \rightarrow 64$ new free: $3,3,3,2,1$
Third bin: $\quad 72 \rightarrow 73$ new free: $3,3,2,2,1$
Fourth bin: 54 stays the same
Reinsert the free items using FFD:
Fourth bin: $\quad 54 \rightarrow 541$
Make new bin: 3322
Final solution: $\quad|352| 64|73| 541|3322|$
Repeat the procedure: no further improvement possible

Two-Dimensional Packing Problems

Two dimensional bin packing
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n rectangular items, each with a width w_{j} and a height h_{j} and an unlimited number of identical rectangular bins of width W and height H.
Task: Allocate all the items into a minimum number of bins, such that the original orientation is respected (no rotation of the items is allowed).

Two-Dimensional Packing Problems

Two dimensional bin packing
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n rectangular items, each with a width w_{j} and a height h_{j} and an unlimited number of identical rectangular bins of width W and height H.
Task: Allocate all the items into a minimum number of bins, such that the original orientation is respected (no rotation of the items is allowed).

Two dimensional strip packing
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n rectangular items, each with a width w_{j} and a height h_{j} and a bin of width W and infinite height (a strip).
Task: Allocate all the items into the strip by minimizing the used height and such that the original orientation is respected (no rotation of the items is allowed).

Two-Dimensional Packing Problems

Two dimensional bin packing
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n rectangular items, each with a width w_{j} and a height h_{j} and an unlimited number of identical rectangular bins of width W and height H.
Task: Allocate all the items into a minimum number of bins, such that the original orientation is respected (no rotation of the items is allowed).

Two dimensional strip packing
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n rectangular items, each with a width w_{j} and a height h_{j} and a bin of width W and infinite height (a strip).
Task: Allocate all the items into the strip by minimizing the used height and such that the original orientation is respected (no rotation of the items is allowed).

Two dimensional cutting stock
Each item has a profit $p_{j}>0$ and the task is to select a subset of items to be packed in a single finite bin that maximizes the total selected profit.

Three dimensional
Given: A set $L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of rectangular boxes, each with a width w_{j}, height h_{j} and depth d_{j} and an unlimited number of three-dimensional bins $B_{1}, B_{2}, \ldots, B_{m}$ of width W, height H, and depth D.

Task: Pack all the boxes into a minimum number of bins, such that the original orientation is respected (no rotation of the boxes is allowed)

List of Problems

See http://www.nada.kth.se/~viggo/problemlist/

Outline

2. Other Combinatorial Optimization Problems

Quadratic Assignment Problem
School Scheduling
Linear Ordering
Bin Packing

School scheduling

Input: a finite set of time periods and courses with assigned: a teacher, a set of attending students and a suitable room.

Task: Produce weekly timetable of courses, that is: assign a time period of the week (typically one hour) to every course such that courses are assigned to different time periods if:

- they are taught by the same teacher
- they can be held only in the same room
- they share students.

