DM811 Heuristics for Combinatorial Optimization

Lecture 2 Introductory Topics

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Search Paradigms Construction Heuristics Local Search

Outline

1. Search Paradigms Construction Heuristics Local Search

Construction Heuristics

Construction heuristics

(aka, single pass heuristics or dispatching rules in scheduling) They are closely related to tree search techniques but correspond to a single path from root to leaf

- search space = partial candidate solutions
- search step = extension with one or more solution components

```
Construction Heuristic (CH):

s := \emptyset

while s is not a complete candidate solution do

choose a solution component (X_i = v_j)

add the solution component to s
```

Designing Constr. Heuristics

Which variable should we assign next, and in what order should its values be tried?

- Select-Unassigned-Variable
 - *Static*: Degree heuristic (reduces the branching factor) also used as tie breaker
 - *Dynamic*: Most constrained variable = Fail-first heuristic = Minimum remaining values heuristic
- Order-Domain-Values

eg, least-constraining-value heuristic (leaves maximum flexibility for subsequent variable assignments)

Designing Constr. Heuristics

- Ideas for variable selection
 - with smallest min value
 - with largest min value
 - with smallest max value
 - with largest max value

- with smallest domain size
- with largest domain size

The degree of a variable is defined as the number of constraints it is involved in.

- with smallest degree. In case of ties, variable with smallest domain.
- with largest degree. In case of ties, variable with smallest domain.
- with smallest domain size divided by degree
- with largest domain size divided by degree

The min-regret of a variable is the difference between the smallest and second-smallest value still in the domain.

- with smallest min-regret: $i = \operatorname{argmin} \Delta f_i^{(2)} \Delta f_i^{(1)}$
- with largest min-regret: $i = \operatorname{argmax} \Delta f_i^{(2)} \Delta f_i^{(1)}$
- with smallest max-regret: $i = \operatorname{argmin} \Delta f_i^{(n)} \Delta f_i^{(1)}$
- with largest max-regret: $i = \operatorname{argmax} \Delta f_i^{(n)} \Delta f_i^{(1)}$

 $\Delta f_i^{(1)}$

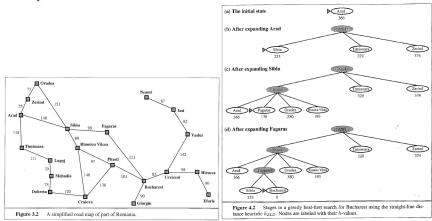
Designing Constr. Heuristics

Ideas for value selection

- Select smallest value
- Select median value
- Select maximal value

Look-ahead:

- Select value that leaves the largest number of feasible values to the other variables
- Select value that leaves the smallest number of feasible values to the other variables (fail early)



Greedy best-first search

- Sometimes greedy heuristics can be proved to be optimal
 - minimum spanning tree,
 - single source shortest path,
 - total weighted sum completion time in single machine scheduling,
 - single machine maximum lateness scheduling
- Other times an approximation ratio can be proved

Local Search Paradigm

- search space = complete candidate solutions
- search step = modification of one or more solution components
- neighborhood candidate solutions in the search space reachable in a step
- iteratively generate and evaluate candidate solutions
 - decision problems: evaluation = test if solution
 - optimization problems: evaluation = check objective function value

```
Iterative Improvement (II):
determine initial candidate solution s
while s has better neighbors do
choose a neighbor s' of s such that f(s') < f(s)
s := s'
```

Local Search Algorithm

Basic Components:

- \bullet solution representation \rightsquigarrow search space
- initial solution
- neighborhood relation (determines the move operator)
- evaluation function