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Course Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

1. Working Environment and Solver System

2. Methods for the Analysis of Experimental Results

3. Construction Heuristics

4. Local Search: Components, Basic Algorithms

5. Local Search: Neighborhoods and Search Landscape

6. Efficient Local Search: Incremental Updates and Neighborhood Pruning

7. Stochastic Local Search & Metaheuristics

8. Configuration Tools: F-race

9. Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering
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Outline

1. Working Environment
Organization
Random Numbers

2. Experimental Analysis
Motivations and Goals
Descriptive Statistics

Performance Measures
Sample Statistics
Scenarios of Analysis
Guidelines for Presenting Data
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Building a Working Environment

What will you need during the project? How will you organize it? How will
you make things work together?

src/ code that implements the algorithm (likely, several versions)
bin/ place where to put your executables
data/ input: Instances for the algorithm, parameters to guide the
algorithm, instructions for reporting.
res/ output: The result, the performance measurements
r/ analysis tools: statistics, data analysis, visualization
doc/ journal/report: A record of your experiments and findings,
together with description of the algorithms.
log/ other log files produced by the run of the algorithm
Makefile compiles the sources in src and puts the executables in bin.
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Example

Input controls on command line

comet queens.co -i instance.in -c output.sol -s 12 > data.log

Output on stdout, self-describing

#stat instance.in 30 90
seed: 9897868
Parameter1: 30
Parameter2: A
Read instance. Time: 0.016001
begin try 1
best 0 col 22 time 0.004000 iter 0 par_iter 0
best 3 col 21 time 0.004000 iter 0 par_iter 0
best 1 col 21 time 0.004000 iter 0 par_iter 0
best 0 col 21 time 0.004000 iter 1 par_iter 1
best 6 col 20 time 0.004000 iter 3 par_iter 1
best 4 col 20 time 0.004000 iter 4 par_iter 2
best 2 col 20 time 0.004000 iter 6 par_iter 4
exit iter 7 time 1.000062
end try 1

8



Example

If a single program that implements many heuristics

re-compile for new versions but take old versions with a journal in
archive.

use command line parameters to choose among the heuristics

C: getopt, getopt_long, opag (option parser generator)
Java: package org.apache.commons.cli
Comet: see example provided loadDIMACS.co

comet queens.co -i instance.in -c output.sol -solver 2-opt > data.out

use identifying labels in naming file outputs
Example:
c0010.i0002.t0001.s02010.log
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Example

You will need:
multiple runs, multiple instances, multiple classes and multiple
algorithms.
Arrange this outside of your program: è unix scripts (eg, bash one line
program, perl, php)

Parse outputfiles:
Example
grep #stat | cut -f 2 -d " "

See http://www.gnu.org/software/coreutils/manual/ for shell tools.

Data in form of matrix or data frame goes directly into R imported by
read.table(), untouched by human hands!
alg instance run sol time
ROS le450_15a.col 3 21 0.00267
ROS le450_15b.col 3 21 0
ROS le450_15d.col 3 31 0.00267
RLF le450_15a.col 3 17 0.00533
RLF le450_15b.col 3 16 0.008
...
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Graphics

Visualization helps understanding

Problem visualization (graphviz, igraph)

Algorithm animation: (comet visualize)

Results visualization: recommended R (more on this later)
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Program Profiling

Check the correctness of your solutions many times

Plot the development of
best visited solution quality
current solution quality

over time and compare with other features of the algorithm.
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Code Optimization

Profile time consumption per program components

under Linux: gprof

1. add flag -pg in compilation
2. run the program
3. gprof gmon.out > a.txt

Java VM profilers (plugin for eclipse)
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Software Development
Extreme Programming & Scrum

Planning

Release planning creates the schedule • Make frequent small releases • The
project is divided into iterations

Designing

Simplicity • No functionality is added early • Refactor: eliminate unused
functionality and redundancy

Coding

Code must be written to agreed standards • Code the unit test first • All
production code is pair programmed • Leave optimization till last • No
overtime

Testing

All code must have unit tests • All code must pass all unit tests before it can
be released • When a bug is found tests are created
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Random Numbers

Carachtersitics of a good pseudo-random generator
(from stochastic simulation)

long period

uniform unbiased distribution

uncorrelated (time series analysis)

efficient

Suggested: MRG32k3a by L’Ecuyer
http://www.iro.umontreal.ca/~lecuyer/
java.lang.Object

extended by umontreal.iro.lecuyer.rng.RandomStreamBase
extended by umontreal.iro.lecuyer.rng.MRG32k3a
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Ideal Random Shuffle
Let’s consider a sequence of n elements: {e1, e2, . . . en}.
The ideal random shuffle is a permutation chosen uniformly at random from
the set of all possible n! permutations.

π1 is uniformly randomly chosen among {e1, e2, . . . en}.
π2 is uniformly randomly chosen among {e1, e2, . . . en} − {π1}.
π3 is uniformly randomly chosen among {e1, e2, . . . en} − {π1, π2}
...

Joint probability of (π1, π2 . . . πn) is 1
n ·

1
n−1 · . . . 1 = 1

n!

long int∗ Random::generate_random_array(const int& size) {
long int i, j, help;
long int ∗v = new long int[size];
for ( i = 0 ; i < size; i++ )

v[i] = i;
for ( i = 0 ; i < size−1 ; i++) {

j = (long int) ( ranU01( ) ∗ (size − i));
help = v[i];
v[i] = v[i+j];
v[i+j] = help;

}
return v; }
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Contents and Goals

Provide a view of issues in Experimental Algorithmics

Exploratory data analysis
Presenting results in a concise way with graphs and tables
Organizational issues and Experimental Design

Basics of inferential statistics
Sequential statistical testing: race, a methodology for tuning

The goal of Experimental Algorithmics is not only producing a sound analysis
but also adding an important tool to the development of a good solver for a
given problem.

Experimental Algorithmics is an important part in the algorithm production
cycle, which is referred to as Algorithm Engineering
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The Engineering Cycle

from http://www.algorithm-engineering.de/
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Experimental Algorithmics

 (Algorithm)
Mathematical Model Simulation Program

Experiment

In empirical studies we consider simulation programs which are the
implementation of a mathematical model (the algorithm)

[McGeoch, 1996]
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Experimental Algorithmics

Goals

Defining standard methodologies
Comparing relative performance of algorithms so as to identify the best
ones for a given application
Characterizing the behavior of algorithms
Identifying algorithm separators, i.e., families of problem instances for
which the performance differ
Providing new insights in algorithm design
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Fairness Principle

Fairness principle: being completely fair is perhaps impossible but try to
remove any possible bias

possibly all algorithms must be implemented with the same style, with
the same language and sharing common subprocedures and data
structures
the code must be optimized, e.g., using the best possible data structures
running times must be comparable, e.g., by running experiments on the
same computational environment (or redistributing them randomly)
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Definitions

The most typical scenario considered in analysis of search heuristics

Asymptotic heuristics with time/quality limit decided a priori

The algorithm A∞ is halted when time expires or a solution of a given quality
is found.

Deterministic case: A∞ on π
returns a solution of cost x.

The performance of A∞ on π is a
scalar y = x.

Randomized case: A∞ on π returns
a solution of cost X, where X is a
random variable.

The performance of A∞ on π is the
univariate Y = X.

[This is not the only relevant scenario: to be refined later]
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Random Variables and Probability
Statistics deals with random (or stochastic) variables.

A variable is called random if, prior to observation, its outcome cannot be
predicted with certainty.

The uncertainty is described by a probability distribution.

Discrete variables

Probability distribution:

pi = P [x = vi]

Cumulative Distribution Function (CDF)

F (v) = P [x ≤ v] =
∑
i

pi

Mean

µ = E[X] =
∑

xipi

Variance

σ2 = E[(X − µ)2] =
∑

(xi − µ)2pi

Continuous variables

Probability density function (pdf):

f(v) =
dF (v)

dv

Cumulative Distribution Function (CDF):

F (v) =

∫ v

−∞
f(v)dv

Mean

µ = E[X] =

∫
xf(x)dx

Variance

σ2 = E[(X −µ)2] =

∫
(x−µ)2f(x) dx



Generalization

For each general problem Π (e.g., TSP, GCP) we denote by CΠ a set
(or class) of instances and by π ∈ CΠ a single instance.

On a specific instance, the random variable Y that defines the performance
measure of an algorithm is described by its probability distribution/density
function

Pr(Y = y | π)

It is often more interesting to generalize the performance
on a class of instances CΠ, that is,

Pr(Y = y, CΠ) =
∑
π∈Π

Pr(Y = y | π)Pr(π)
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Sampling

In experiments,

1. we sample the population of instances and
2. we sample the performance of the algorithm on each sampled instance

If on an instance π we run the algorithm r times then we have r replicates of
the performance measure Y , denoted Y1, . . . , Yr, which are independent and
identically distributed (i.i.d.), i.e.

Pr(y1, . . . , yr|π) =

r∏
j=1

Pr(yj | π)

Pr(y1, . . . , yr) =
∑
π∈CΠ

Pr(y1, . . . , yr | π)Pr(π).
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Instance Selection

In real-life applications a simulation of p(π) can be obtained by
historical data.

In simulation studies instances may be:

real world instances
random variants of real world-instances
online libraries
randomly generated instances

They may be grouped in classes according to some features whose impact
may be worth studying:

type (for features that might impact performance)
size (for scaling studies)
hardness (focus on hard instances)
application (e.g., CSP encodings of scheduling problems), ...

Within the class, instances are drawn with uniform probability p(π) = c
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Statistical Methods

The analysis of performance is based on finite-sized sampled data.
Statistics provides the methods and the mathematical basis to

describe, summarizing, the data (descriptive statistics)
make inference on those data (inferential statistics)

Statistics helps to

guarantee reproducibility
make results reliable
(are the observed results enough to justify the claims?)
extract relevant results from large amount of data

In the practical context of heuristic design and implementation (i.e.,
engineering), statistics helps to take correct design decisions with the least
amount of experimentation

31



Objectives of the Experiments

Comparison:
bigger/smaller, same/different,
Algorithm Configuration,
Component-Based Analysis

Standard statistical methods:
experimental designs, test
hypothesis and estimation

Characterization:
Interpolation: fitting models to data
Extrapolation: building models of
data, explaining phenomena

Standard statistical methods: linear
and non linear regression
model fitting

Response
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Measures and Transformations

On a single instance

Design: Several runs on an instance

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X21 Xk1

...
...

...
...

Instance 1 X1r X2r Xkr
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Measures and Transformations

On a single instance

Computational effort indicators

number of elementary operations/algorithmic iterations
(e.g., search steps, objective function evaluations, number of visited
nodes in the search tree, consistency checks, etc.)
total CPU time consumed by the process
(sum of user and system times returned by getrusage)

Solution quality indicators

value returned by the cost function
error from optimum/reference value
(optimality) gap UB−LB

LB+ε (if max UB−LB
UB+ε )

ε is an infinitesimal for the case LB = 0 but UB − LB 6= 0

ranks
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Measures and Transformations

On a class of instances
Design A: One run on various instances

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X11 X12 X1k

...
...

...
...

Instance b Xb1 Xb2 Xbk

Design B: Several runs on various instances

Algorithm 1 Algorithm 2 . . . Algorithm k
Instance 1 X111, . . . , X11r X121, . . . , X12r X1k1, . . . , X1kr

Instance 2 X211, . . . , X21r X221, . . . , X22r X2k1, . . . , X2kr

...
...

...
...

Instance b Xb11, . . . , Xb1r Xb21, . . . , Xb2r Xbk1, . . . , Xbkr
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Measures and Transformations

On a class of instances

Computational effort indicators

no transformation if the interest is in studying scaling
standardization if a fixed time limit is used
geometric mean (used for a set of numbers whose values are meant to
be multiplied together or are exponential in nature),
otherwise, better to group homogeneously the instances

Solution quality indicators

Different instances imply different scales ⇒ need for an invariant measure

(However, many other measures can be taken both on the algorithms and on
the instances [McGeoch, 1996])
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Measures and Transformations

On a class of instances (cont.)

Solution quality indicators

Distance or error from a reference value
(assume minimization case):

e1(x, π) =
x(π)− x̄(π)√

ˆσ(π)

standard score

e2(x, π) =
x(π)− xopt(π)

xopt(π)
relative error

e3(x, π) =
x(π)− xopt(π)

xworst(π)− xopt(π)
invariant [Zemel, 1981]

optimal value computed exactly or known by construction
surrogate value such bounds or best known values

Rank (no need for standardization but loss of information)



Sampling

We work with samples (instances, solution quality) drawn from
populations

Population
P (x, θ)

Parameter θ

Random Sample
Xn

Statistical Estimator θ̂
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Summary Measures

Measures to describe or characterize a population

Measure of central tendency, location
Measure of dispersion

One such a quantity is

a parameter if it refers to the population (Greek letters)
a statistics if it is an estimation of a population parameter from the
sample (Latin letters)
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Measures of central tendency

Arithmetic Average (Sample mean)

X̄ =

∑
xi
n

Quantile: value above or below which lie a fractional part of the data
(used in nonparametric statistics)

Median

M = x(n+1)/2

Quartile

Q1 = x(n+1)/4 Q3 = x3(n+1)/4

q-quantile

q of data lies below and 1− q lies above

Mode

value of relatively great concentration of data
(Unimodal vs Multimodal distributions)



Measure of dispersion

Sample range

R = x(n) − x(1)

Sample variance

s2 =
1

n− 1

∑
(xi − X̄)2

Standard deviation

s =
√
s2

Inter-quartile range

IQR = Q3 −Q1
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Boxplot and a probability density function (pdf) of a Normal N(0,1) Population.
(source: Wikipedia)
[see also: http://informationandvisualization.de/blog/box-plot]

http://informationandvisualization.de/blog/box-plot


Histogram
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In R

> x<−runif(10,0,1)
mean(x), median(x), quantile(x), quantile(x,0.25)
range(x), var(x), sd(x), IQR(x)

> fivenum(x)
#(minimum, lower−hinge, median, upper−hinge, maximum)
[1] 0.18672 0.26682 0.28927 0.69359 0.92343
> summary(x)
> aggregate(x,list(factors),median)
> boxplot(x)
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Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics:
Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Scenario A

Single-pass heuristics

Deterministic case: Aa on class CΠ

returns a solution of cost x with
computational effort t (e.g., running
time).

The performance of Aa on class CΠ

is the vector ~y = (x, t).

Randomized case: Aa on class CΠ

returns a solution of cost X with
computational effort T , where X and
T are random variables.

The performance of Aa on class CΠ

is the bivariate ~Y = (X,T ).
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Example

Scenario:

B 3 heuristics Aa1 , Aa2 , Aa3 on class CΠ.
B homogeneous instances or need for data transformation.
B 1 or r runs per instance
I Interest: inspecting solution cost and running time to observe and

compare the level of approximation and the speed.

Tools:

Scatter plots of solution-cost and run-time
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Multi-Criteria Decision Making

Needed some definitions on dominance relations

In Pareto sense, for points in R2

~x1 � ~x2 weakly dominates x1
i ≤ x2

i for all i = 1, . . . , n
~x1 ‖ ~x2 incomparable neither ~x1 � ~x2 nor ~x2 � ~x1
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Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics:
Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Scenario B

Asymptotic heuristics

There are two approaches:

1.a. Time as an external parameter decided a priori.
The algorithm is halted when time expires.

Deterministic case: A∞ on class
CΠ returns a solution of cost x.

The performance of A∞ on class CΠ

is the scalar y = x.

Randomized case: A∞ on class CΠ

returns a solution of cost X, where X
is a random variable.

The performance of A∞ on class CΠ

is the univariate Y = X.
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Example

Scenario:

B 3 heuristics A∞1 , A∞2 , A∞3 on class CΠ.
(Or 3 heuristics A∞1 , A∞2 , A∞3 on class CΠ without interest in
computation time because negligible or comparable)

B homogeneous instances (no data transformation) or heterogeneous (data
transformation)

B 1 or r runs per instance
B a priori time limit imposed
I Interest: inspecting solution cost

Tools:
Histograms (summary measures: mean or median or mode?)
Boxplots
Empirical cumulative distribution functions (ECDFs)
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## load the data
> load("results.rda")
> levels(DATA$instance)
[1] "queen4_4.txt" "queen5_5.txt" "queen6_6.txt" "queen7_7.txt"
[5] "queen8_8.txt" "queen9_9.txt" "queen10_10.txt" "queen11_11.txt"
[9] "queen12_12.txt" "queen13_13.txt" "queen14_14.txt" "queen15_15.txt"

[13] "queen16_16.txt" "queen17_17.txt" "queen18_18.txt" "queen19_19.txt"
[17] "queen20_20.txt" "queen21_21.txt" "queen22_22.txt" "queen23_23.txt"
[21] "queen24_24.txt" "queen25_25.txt" "queen26_26.txt" "queen27_27.txt"
[25] "queen28_28.txt" "queen29_29.txt" "queen30_30.txt" "queen31_31.txt"
[29] "queen32_32.txt"
> bwplot(reorder(alg, col, median)~col,data=DATA)
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> bwplot(reorder(alg, col, median)~col|instance,data=DATA,as.table=TRUE)
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On a class of instances
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On a class of instances
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Stochastic Dominance

Definition: Algorithm A1 probabilistically dominates algorithm A2 on a
problem instance, iff its CDF is always "below" that of A2, i.e.:

F1(x) ≤ F2(x), ∀x ∈ X
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R code behind the previous plots

We load the data and plot the comparative boxplot for each instance.
> load("TS.class-G.dataR")
> G[1:5,]

alg inst run sol time.last.imp tot.iter parz.iter exit.iter exit.time opt
1 TS1 G−1000−0.5−30−1.1.col 1 59 9.900619 5955 442 5955 10.02463 30
2 TS1 G−1000−0.5−30−1.1.col 2 64 9.736608 3880 130 3958 10.00062 30
3 TS1 G−1000−0.5−30−1.1.col 3 64 9.908618 4877 49 4877 10.03263 30
4 TS1 G−1000−0.5−30−1.1.col 4 68 9.948622 6996 409 6996 10.07663 30
5 TS1 G−1000−0.5−30−1.1.col 5 63 9.912620 3986 52 3986 10.04063 30
>
> library(lattice)
> bwplot(alg ~ sol | inst,data=G)

If we want to make an aggregate analysis we have the following choices:
maintain the raw data,
transform data in standard error,
transform the data in relative error,
transform the data in an invariant error,
transform the data in ranks.
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Maintain the raw data
> par(mfrow=c(3,2),las=1,font.main=1,mar=c(2,3,3,1))
> #original data
> boxplot(sol~alg,data=G,horizontal=TRUE,main="Original data")
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Transform data in standard error
> #standard error
> T1 <− split(G$sol,list(G$inst))
> T2 <− lapply(T1,scale,center=TRUE,scale=TRUE)
> T3 <− unsplit(T2,list(G$inst))
> T4 <− split(T3,list(G$alg))
> T5 <− stack(T4)
> boxplot(values~ind,data=T5,horizontal=TRUE,main=expression(paste("Standard error: ",

frac(x−bar(x),sqrt(sigma)))))
> library(latticeExtra)
> ecdfplot(~values,group=ind,data=T5,main=expression(paste("Standard error:
",frac(x−bar(x),sqrt(sigma)))))

> #standard error
> G$scale <− 0
> split(G$scale, G$inst) <− lapply(split(G$sol, G$inst), scale,center=TRUE,scale=TRUE)
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Transform the data in relative error
> #relative error
> G$err2 <− (G$sol−G$opt)/G$opt
> boxplot(err2~alg,data=G,horizontal=TRUE,main=expression(paste("Relative error: ",frac(x

−x^(opt),x^(opt)))))
> ecdfplot(G$err2,group=G$alg,main=expression(paste("Relative error: ",frac(x−x^(opt),x^(

opt)))))
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Transform the data in an invariant error
We use as surrogate of xworst the median solution returned by the simplest
algorithm for the graph coloring, that is, the ROS heuristic.
> #error 3
> load("ROS.class-G.dataR")
> F1 <− aggregate(F$sol,list(inst=F$inst),median)
> F2 <− split(F1$x,list(F1$inst))
> G$ref <− sapply(G$inst,function(x) F2[[x]])
> G$err3 <− (G$sol−G$opt)/(G$ref−G$opt)
> boxplot(err3~alg,data=G,horizontal=TRUE,main=expression(paste("Invariant error: ",frac(

x−x^(opt),x^(worst)−x^(opt)))))
> ecdfplot(G$err3,group=G$alg,main=expression(paste("Invariant error: ",frac(x−x^(opt),x^(

worst)−x^(opt)))))
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Transform the data in ranks
> #rank
> G$rank <− G$sol
> split(G$rank, G$inst) <− lapply(split(G$sol, D$inst), rank)
> bwplot(rank~reorder(alg,rank,median),data=G,horizontal=TRUE,main="Ranks")
> ecdfplot(rank,group=alg,data=G,main="Ranks")
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> ## Let’s make the ranks of the colors
> T1 <− split(DATA["col"], DATA["instance"])
> T2 <− lapply(T1, rank, na.last = "keep")
> T3 <− unsplit(T2, DATA["instance"])
> DATA$rank <− T3
>
> ## we plot the ranks for an aggregate analysis
> ## reoder sort the factor algorithm by median values
> bwplot(reorder(alg, rank, median) ~ rank, data = DATA)
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Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics:
Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Scenario B

Asymptotic heuristics

There are two approaches:

1.b. Solution quality as an external parameter decided a priori. The
algorithm is halted when quality is reached.

Deterministic case: A∞ on class
CΠ finds a solution in running time t.

The performance of A∞ on class CΠ

is the scalar y = t.

Randomized case: A∞ on class CΠ

finds a solution in running time T ,
where T is a random variable.

The performance of A∞ on class CΠ

is the univariate Y = T .
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Dealing with Censored Data
Asymptotic heuristics, Approach 1.b

B Heuristic Aa stopped before completion or A∞ truncated (always the
case)

I Interest: determining whether a prefixed goal (optimal/feasible) has
been reached

The computational effort to attain the goal can be specified by a cumulative
distribution function F (t) = P (T < t) with T in [0,∞).

If in a run i we stop the algorithm at time Li then we have a Type I right
censoring, that is, we know either

Ti if Ti ≤ Li
or Ti ≥ Li.

Hence, for each run i we need to record min(Ti, Li) and the indicator
variable for observed optimal/feasible solution attainment, δi = I(Ti ≤ Li).
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Example
Asymptotic heuristics, Approach 1.b: Example

B An exact vs an heuristic algorithm for the
2-edge-connectivity augmentation problem.

I Interest: time to find the optimum on different instances.
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Scenarios

A. Single-pass heuristics

B. Asymptotic heuristics:
Two approaches:

1. Univariate

1.a Time as an external parameter decided a priori
1.b Solution quality as an external parameter decided a priori

2. Cost dependent on running time:
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Scenario B

Asymptotic heuristics

There are two approaches:

2. Cost dependent on running time:

Deterministic case: A∞ on π
returns a current best solution x
at each observation in t1, . . . , tk.

The performance of A∞ on π is
the profile indicated by the vector
~y = {x(t1), . . . , x(tk)}.

Randomized case: A∞ on π
produces a monotone stochastic
process in solution cost X(τ) with
any element dependent on the
predecessors.

The performance of A∞ on π is
the multivariate
~Y = (X(t1), X(t2), . . . , X(tk)).
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Example

Scenario:

B 3 heuristics A∞1 , A∞2 , A∞3 on instance π.
B single instance hence no data transformation.
B r runs
I Interest: inspecting solution cost over running time to determine

whether the comparison varies over time intervals

Tools:
Quality profiles
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The performance is described by multivariate random variables of the kind
~Y = {Y (t1), Y (t2), . . . , Y (lk)}.

Sampled data are of the form ~Yi = {Yi(t1), Yi(t2), . . . , Yi(tk)}, i = 1, . . . , 10
(10 runs per algorithm on one instance)

time

co
st

70

80

90

100

0 200 400 600 800 1000 1200

Novelty

0 200 400 600 800 1000 1200

Tabu Search

74



The performance is described by multivariate random variables of the kind
~Y = {Y (t1), Y (t2), . . . , Y (lk)}.

Sampled data are of the form ~Yi = {Yi(t1), Yi(t2), . . . , Yi(tk)}, i = 1, . . . , 10
(10 runs per algorithm on one instance)
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The performance is described by multivariate random variables of the kind
~Y = {Y (t1), Y (t2), . . . , Y (lk)}.

Sampled data are of the form ~Yi = {Yi(t1), Yi(t2), . . . , Yi(tk)}, i = 1, . . . , 10
(10 runs per algorithm on one instance)
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Summary

Visualize your data for your analysis and for communication to others

Explore your data:

make plots: histograms, boxplots, empirical cumulative distribution
functions, correlation/scatter plots
look at the numerical data and interpret them in practical terms:
computation times, distance from optimum
look for patterns

All the above both at a single instance level and at an aggregate level.
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Making Plots

http://algo2.iti.uni-karlsruhe.de/sanders/courses/bergen/bergenPresenting.pdf

[Sanders, 2002]

Should the experimental setup from the exploratory phase be redesigned to
increase conciseness or accuracy?

What parameters should be varied? What variables should be measured?

How are parameters chosen that cannot be varied?

Can tables be converted into curves, bar charts, scatter plots or any other
useful graphics?

Should tables be added in an appendix?

Should a 3D-plot be replaced by collections of 2D-curves?

Can we reduce the number of curves to be displayed?

How many figures are needed?

Should the x-axis be transformed to magnify interesting subranges?
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Should the x-axis have a logarithmic scale? If so, do the x-values used
for measuring have the same basis as the tick marks?

Is the range of x-values adequate?

Do we have measurements for the right x-values, i.e., nowhere too dense
or too sparse?

Should the y-axis be transformed to make the interesting part of the
data more visible?

Should the y-axis have a logarithmic scale?

Is it misleading to start the y-range at the smallest measured value?
(if not too much space wasted start from 0)

Clip the range of y-values to exclude useless parts of curves?

Can we use banking to 45o?

Are all curves sufficiently well separated?

Can noise be reduced using more accurate measurements?

Are error bars needed? If so, what should they indicate? Remember that
measurement errors are usually not random variables.



Connect points belonging to the same curve.

Only use splines for connecting points if interpolation is sensible.

Do not connect points belonging to unrelated problem instances.

Use different point and line styles for different curves.

Use the same styles for corresponding curves in different graphs.

Place labels defining point and line styles in the right order and without
concealing the curves.

Give axis units

Captions should make figures self contained.

Give enough information to make experiments reproducible.

Golden ratio rule: make the graph wider than higher [Tufte 1983].

Rule of 7: show at most 7 curves (omit those clearly irrelevant).

Avoid: explaining axes, connecting unrelated points by lines, cryptic
abbreviations, microscopic lettering, pie charts
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Results Assignment 2
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