
DM811

Heuristics for Combinatorial Optimization

Lecture 4

Solver Systems +
Construction Heuristics and Metaheuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsCourse Overview

4 Combinatorial Optimization, Methods and Models

4 CH and LS: overview

˜ Working Environment and Solver Systems

˜ Methods for the Analysis of Experimental Results

Construction Heuristics

Local Search: Components, Basic Algorithms

Local Search: Neighborhoods and Search Landscape

Efficient Local Search: Incremental Updates and Neighborhood Pruning

Stochastic Local Search & Metaheuristics

Configuration Tools: F-race

Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering

2

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

2. Descriptions

3. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

4. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

3

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

2. Descriptions

3. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

4. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

4

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsSoftware Tools

Modeling languages
interpreted languages with a precise syntax and semantics

Software libraries
collections of subprograms used to develop software

Software frameworks
set of abstract classes and their interactions

frozen spots (remain unchanged in any instantiation of the framework)

hot spots (parts where programmers add their own code)

5

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsSoftware Tools

No well established software tool for Local Search:

the apparent simplicity of Local Search induces to build applications
from scratch.

the freedom of problem characteristics that can be tackled

crucial roles played by delta/incremental updates which are highly
problem dependent

the development of Local Search is in part a craft,
beside engineering and science.

lack of a unified view of Local Search.

6

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsSoftware Tools

EasyLocal++ C++, (Java) Local Search
ParadisEO C++ Local Search, Evolutionary Algorithm
OpenTS Java Tabu Search
Comet Language
LocalSolver Language
Google OR Tools Libraries

EasyLocal++ http://tabu.diegm.uniud.it/EasyLocal++/
ParadisEO http://paradiseo.gforge.inria.fr
OpenTS http://www.coin-or.org/Ots
Comet http://dynadec.com/
LocalSolver http://www.localsolver.com/
Google OR Tools https://code.google.com/p/or-tools/

7

http://tabu.diegm.uniud.it/EasyLocal++/
http://paradiseo.gforge.inria.fr
http://www.coin-or.org/Ots
http://dynadec.com/
http://www.localsolver.com/
https://code.google.com/p/or-tools/

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsA Framework

http://tabu.diegm.uniud.it/EasyLocal++/

8

http://tabu.diegm.uniud.it/EasyLocal++/

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsComet is

A programming language

Syntax inspired by C++
Object-oriented
Operator overloading
Filestreams

Interpreted or Just-in-Time compiled
Garbage collection
High-level features

Invariants (one-way-constraints)
Closures
Functional programming-like constructions

List comprehension
collect, filter, sum, select, selectMin, selectMax

Sets, dictionaries, etc. are builtin types
Events

10

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsWorkflow

11

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsWorkflow

12

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsWorkflow

13

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsSource Organization

14

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsSource Organization

15

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsSource Organization

16

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsComet is

A runtime environment
With integrated optimization solvers

Constraint-Based Local Search
Constraint Programming
Linear Programming (COIN-OR CLP)
Mixed Integer Programming

2D graphics library
Available for many platforms

Mac OS X (32 and 64 bit)
Windows
Linux (32 and 64 bit)

Ubuntu
SuSE
RedHat/Fedora

17

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsComet is

Unfortunately not Open Source

Developed by Pascal Van Hentenryck (Brown University), Laurent Michel
(University of Connecticut), now owned by Dynadec.

Not anymore in active development

18

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsConstraint Programming is

Model
Variables

Domains

Objective Function
Constraints

Search
Branching

Variable selection
Value selection

Search strategy
BFS
DFS
LDS

19

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsConstraint-Based Local Search is

Model
Incremental variables
Invariants
Differentiable objects

Functions
Constraints
Constraint Systems

Search
Local Search

Iterative Improvement
Tabu Search
Simulated Annealing
Guided Local Search

20

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsIncremental variables

var{int}, var{bool}, var{set{int}}, ...

Attached to a model object
Has a domain
Has a value

Examples
Solver<LS> m();

var{int} x(m, 1..100);
var{bool} b[1..7](m);
var{set{int}} S(m);

x := 7;
S := {1,3,6,8};

21

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsInvariants

var <- expr
Also known as one-way constraints
Defined over incremental variables
Implicitly attached to a model object
LHS variable value is maintained incrementally under changes to RHS
variable values
Can be user defined (by implementing Invariant<LS>)

Examples
var{int} x(m) := 7
var{int} y(m) <- (x+5)*x;
x <- y; // not allowed!!!
y := 3; // not allowed!!!
var{int} c[i in 1..n](m) := (i % 6);
var{int} C(m) <- sum(i in 1..n)(c[i]);
var{set{int}} Z(m) <- collect(i in n : c[i] == 0)(i);
var{int} q(m) <- c[x];

22

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsDifferentiable objects

Constraint<LS>

ConstraintSystem<LS>

Function<LS>

Defined over incremental variables
Implicitly attached to a model object
Has a value (or a number of violations)
Maintains value incrementally under changes to variable values
Supports delta evaluations
Can be user defined (by extending UserConstraint<LS>)

23

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsConstraint<LS>

Interface
int getAssignDelta(var{int},int)
int getAssignDelta(var{int}[],int[])
int getSwapDelta(var{int},var{int})
var{int}[] getVariables()
var{boolean} isTrue()
var{int} violations()
var{int} violations(var{int})

24

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsConstraintSystem<LS> extends Constraint<LS>

A conjunction of constraints

Interface
Constraint<LS> post(expr{boolean})
Constraint<LS> post(expr{boolean},int)
Constraint<LS> post(Constraint<LS>)
Constraint<LS> post(Constraint<LS>,int)

25

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsConstraintSystem<LS> extends Constraint<LS>

Examples
Solver<LS> m();
var{int} x[1..10](m);
var{int} y[1..10](m, 1..2);
int w[i in 1..10] = 2*i;
int C[1..2] = 95;

ConstraintSystem<LS> S(m);
S.post(x[1] >= 7);
S.post(sum(i in 3..7)(x[i]*x[i] <= x[10]);
S.post(AllDifferent<LS>(x));
S.post(Knapsack<LS>(y, w, C));

26

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsOverview

29

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsExample

N -Queens problem

Input: A chessboard of size N ×N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

30

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsA CP Example

import cotfd;

int t0 = System.getCPUTime();
Solver<CP> m();
int n = 8;
range S = 1..n;
var<CP>{int} q[i in S](m,S);
Integer c(0);
solve<m> {
m.post(alldifferent(all(i in S) q[i] + i));
m.post(alldifferent(all(i in S) q[i] − i));
m.post(alldifferent(q));

} using {
forall(i in S : !q[i].bound()) by (q[i].getSize())
tryall<m>(v in S : q[i].memberOf(v))

m.post(q[i] == v);
onFailure m.post(q[i]!=v);
cout << q << endl;
c := c + 1;

}

cout << "Nb = " << c << endl;
cout << "Time = " << System.getCPUTime() − t0 << endl;
cout << "#choices = " << m.getNChoice() << endl;
cout << "#fail = " << m.getNFail() << endl;

31

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsAn LS Example

import cotls;
int n = 16;
range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] − i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 ∗ n) {
select(q in Size, v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;
cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol: "<<S.violations() <<

endl;
}
it = it + 1;

}
cout << queen << endl;

32

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsHow to learn more

Comet Tutorial
in the Comet distribution

Constraint-Based Local Search
P. Van Hentenryck, L. Michel
MIT Press, 2005
ISBN-10: 0-262-22077-6

Implement, experiment, fail, think, try again!
See: http://www.imada.sdu.dk/~marco/Misc/comet.html
Ask: http://forums.dynadec.com

33

http://www.imada.sdu.dk/~marco/Misc/comet.html
http://forums.dynadec.com

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

2. Descriptions

3. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

4. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

34

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsGuidelines for Text Writing

Outline:
1. word (discursive) description

2. precise algorithm using mathematical notation and pseudo-code

3. implementation details, ie, abstract data structures

4. computational (runtime, space) analysis

Refer to floating environments like Algorithms and Figures that you
present in the text

Cite your sources in a proper and detailed way, they must be retrievable
by the reader. If you do not do it then you are committing plagiarism.

Before submitting: run spell checker and then read again and again and
again

Mathematical notation makes things clearer and precise and the overall
descriptions more concise. (but use latex!)

As a reader you should ask yourself whether you would be able to
reproduce the algorithm in exactly the same way as described.

35

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

2. Descriptions

3. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

4. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

36

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsComplete Search Methods

Tree search:
Uninformed Search

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Bidirectional Search

Informed Search
best-first search, aka, greedy
search
A∗ search
Iterative Deepening A∗

Memory bounded A∗

Recursive best first

38

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsConstraint Satisfaction and Backtracking

1) Which variable should we assign next,
and in what order should its values be tried?

Select-Initial-Unassigned-Variable

Select-Unassigned-Variable
most constrained first = fail-first heuristic
= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)
least constrained last

Eg.: max degree, farthest, earliest due date, etc.

Order-Domain-Values
greedy
least constraining value heuristic
(leaves maximum flexibility for subsequent variable assignments)
maximal regret
implements a kind of look ahead

39

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints:

Implicit in Select-Unassigned-Variable

Forward checking (coupled with Minimum Remaining Values)

Constraint propagation in CSP
arc consistency: force all (directed) arcs uv to be consistent:
∃ a value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (Maintaining Arc Consistency)

Applied repeatedly

[Can you find preprocessing rules for the graph coloring problem?]

43

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsPropagation: An Example

44

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

3) When a path fails – that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
chronological backtracking, the most recent decision point is revisited
backjumping, backtracks to the most recent variable in the conflict set
(set of previously assigned variables connected to X by constraints).

45

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsDealing with Objectives

Optimization Problems

A∗ search
The priority assigned to a node x is determined by the function

f(x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.
It is optimal if h(x) is an

admissible heuristic: never overestimates the cost to reach the goal
consistent: h(n) ≤ c(n, a, n′) + h(n′)

47

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

A∗ search

48

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

A∗ search

Possible choices for admissible heuristic functions

optimal solution to an easily solvable relaxed problem
optimal solution to an easily solvable subproblem
learning from experience by gathering statistics on state features
preferred heuristics functions with higher values (provided they do not
overestimate)
if several heuristics available h1, h2, . . . , hm and not clear which is the
best then:

h(x) = max{h1(x), . . . , hm(x)}

49

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

A∗ search
Drawbacks

Time complexity: In the worst case, the number of nodes expanded is
exponential,
(but it is polynomial when the heuristic function h meets the following
condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A∗ (IDA∗),
memory-bounded A∗ (MA∗) and simplified memory bounded A∗ (SMA∗)
and recursive best-first search (RBFS)

50

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsIncomplete Search

Complete search is often better suited when ...

proofs of insolubility or optimality are required;
time constraints are not critical;
problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...

non linear constraints and non linear objective function;
reasonably good solutions are required within a short time;
problem-specific knowledge is rather limited.

53

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsGreedy algorithms

Greedy algorithms (derived from best-first)

Strategy: always make the choice that is best at the moment
Single descent in the search tree
They are not generally guaranteed to find globally optimal solutions
(but sometimes they do: Minimum Spanning Tree, Single Source
Shortest Path, etc.)

We will see problem sepcific examples

55

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsOutline

1. Software Tools
Constraint-Based Local Search with CometTM

2. Descriptions

3. Construction Heuristics
Complete Search Methods
Incomplete Search Methods

4. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP

56

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsMetaheuristics

On backtracking framework
(beyond best-first search)

Random Restart

Bounded backtrack

Credit-based search

Limited Discrepancy Search

Barrier Search

Randomization in Tree Search

Outside the exact framework
(beyond greedy search)

Random Restart

Rollout/Pilot Method

Beam Search

Iterated Greedy

GRASP

(Adaptive Iterated Construction
Search)

(Multilevel Refinement)

57

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsBounded backtrack

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

58

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsLimited Discrepancy Search

Limited Discrepancy Search (LDS)

Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

Control parameter: the number of
discrepancies

60

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsRandomization in Tree Search

The idea comes from complete search: the important decisions are made up
in the search tree (backdoors) random selections + restart strategy

Random selections
randomization in variable ordering:

breaking ties at random
use heuristic to rank and randomly pick from small factor from the best
random pick among heuristics
random pick variable with probability depending on heuristic value

randomization in value ordering:
just select random from the domain

Restart strategy in backtracking

Example: Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)

63

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsRollout/Pilot Method

Derived from A∗

Each candidate solution is a collection of m components
S = (s1, s2, . . . , sm).
Master process adds components sequentially to a partial solution
Sk = (s1, s2, . . . sk)

At the k-th iteration the master process evaluates feasible components
to add based on an heuristic look-ahead strategy.
The evaluation function H(Sk+1) is determined by sub-heuristics that
complete the solution starting from Sk

Sub-heuristics are combined in H(Sk+1) by
weighted sum
minimal value

65

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

Speed-ups:

halt whenever cost of current partial solution exceeds current upper
bound
evaluate only a fraction of possible components

66

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsBeam Search

Again based on tree search:
maintain a set B of bw (beam width) partial candidate solutions

at each iteration extend each solution from B in fw (filter width)
possible ways

rank each bw × fw candidate solutions and take the best bw partial
solutions

complete candidate solutions obtained by B are maintained in Bf

Stop when no partial solution in B is to be extended

68

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsIterated Greedy

(aka, Adaptive Large Neighborhood Search, see later)

Key idea: use greedy construction

alternation of construction and deconstruction phases
an acceptance criterion decides whether the search continues from the
new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r

70

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsGRASP

Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

By iterating cycles of constructive + local search, further performance
improvements can be achieved.

72

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.
Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.
Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.

73

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

Restricted candidate lists (RCLs)

Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

RCLs are constructed in each step using a heuristic function h.

RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

RCLs based on value restriction comprise all solution components l for
which h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l. (α is a parameter of the algorithm.)

Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)

74

Software Tools
Descriptions
Construction Heuristics
MetaheuristicsExample: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
Constructor: greedy algorithm on a sequence of problem elements.
Analyzer: assign a penalty to problem elements that contribute to flaws
in the current solution.
Prioritizer: uses the penalties to modify the previous sequence of problem
elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other

75

	Software Tools
	Constraint-Based Local Search with Comet™

	Descriptions
	Construction Heuristics
	Complete Search Methods
	Incomplete Search Methods

	Metaheuristics
	Random Restart
	Rollout/Pilot Method
	Beam Search
	Iterated Greedy
	GRASP

