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Course Overview

v/ Combinatorial Optimization, Methods and Models
¢ CH and LS: overview

~ Working Environment and Solver Systems

~ Methods for the Analysis of Experimental Results

o Construction Heuristics

(]

Local Search: Components, Basic Algorithms

(]

Local Search: Neighborhoods and Search Landscape

o Efficient Local Search: Incremental Updates and Neighborhood Pruning
o Stochastic Local Search & Metaheuristics

o Configuration Tools: F-race

@ Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
p-median, set covering
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Software Tools

Software Tools

@ Modeling languages
interpreted languages with a precise syntax and semantics

@ Software libraries
collections of subprograms used to develop software

o Software frameworks
set of abstract classes and their interactions

o frozen spots (remain unchanged in any instantiation of the framework)

o hot spots (parts where programmers add their own code)



Software Tools

Software Tools

No well established software tool for Local Search:

@ the apparent simplicity of Local Search induces to build applications
from scratch.

@ the freedom of problem characteristics that can be tackled

o crucial roles played by delta/incremental updates which are highly
problem dependent

o the development of Local Search is in part a craft,
beside engineering and science.

o lack of a unified view of Local Search.
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EasylLocal++
ParadiseO
OpenTS

Comet
LocalSolver
Google OR Tools

C++, (Java) Local Search

C++ Local Search, Evolutionary Algorithm
Java Tabu Search

Language

Language

Libraries

EasylLocal++
ParadiseO
OpenTS

Comet
LocalSolver
Google OR Tools

http://tabu.diegm.uniud.it/EasyLocal++/
http://paradiseo.gforge.inria.fr
http://www.coin-or.org/0ts
http://dynadec.com/
http://www.localsolver.com/
https://code.google.com/p/or-tools/



http://tabu.diegm.uniud.it/EasyLocal++/
http://paradiseo.gforge.inria.fr
http://www.coin-or.org/Ots
http://dynadec.com/
http://www.localsolver.com/
https://code.google.com/p/or-tools/

A Framework

User Application
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Software Tools
Descriptions

Construction Heuristics

Comet is Construction

A programming language
@ Syntax inspired by C++
o Object-oriented
o Operator overloading
o Filestreams
@ Interpreted or Just-in-Time compiled
o Garbage collection
o High-level features

e Invariants (one-way-constraints)

o Closures
e Functional programming-like constructions

o List comprehension

@ collect, filter, sum, select, selectMin, selectMax
Sets, dictionaries, etc. are builtin types
Events
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Workflow
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Workflow
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Workflow
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Virtual Machine

13



Source Organization
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Interface

Class (0
Function (D

14



Source Organization

Compilation >
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Interface

Class (0
Function (D
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Source Organization

Software Tools
Descriptions

Construction Heuristics

Metaheuristics

Interface
Class ()
Function (D
am
_ am
Order of definitions irrelevant
All the “top-level” statements form the main function
3 No globals
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Comet is

A runtime environment

o With integrated optimization solvers

Constraint-Based Local Search
Constraint Programming

Linear Programming (COIN-OR CLP)
Mixed Integer Programming

o 2D graphics library
o Available for many platforms

e Mac OS X (32 and 64 bit)
o Windows
o Linux (32 and 64 bit)

o Ubuntu

o SuSE

o RedHat/Fedora

Software Tools
Descriptions

Construction Heuristics

Metaheuristics
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Comet is Construction 1

Unfortunately not Open Source

Developed by Pascal Van Hentenryck (Brown University), Laurent Michel
(University of Connecticut), now owned by Dynadec.

Not anymore in active development

18



Software Tools
Descriptions

. . . Construction Heuristics
Constraint Programming is Metsheursics
e Model
e Variables

o Domains

o Objective Function
o Constraints

@ Search
e Branching

@ Variable selection
@ Value selection

o Search strategy
e BFS
o DFS
e LDS

19



Constraint-Based Local Search is

e Model

o Incremental variables
e Invariants
o Differentiable objects
@ Functions
o Constraints
o Constraint Systems

o Search
o Local Search

o lIterative Improvement
@ Tabu Search

o Simulated Annealing
°

Guided Local Search
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Incremental variables

o var{int}, var{bool}, var{set{int}},
o Attached to a model object
@ Has a domain

@ Has a value

Software Tools
Descriptions

Construction Heuristics

Metaheuristics

Examples

Solver<LS> m();

var{int} x(m, 1..100);
var{bool} b[1..7] (m);
var{set{int}} S(m);

X 1= 7;
{1,3,6,8};

4]
1]
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Construction Heuristics

I nvaria nts Metaheuristics

var <- expr
Also known as one-way constraints
Defined over incremental variables

Implicitly attached to a model object

® 6 o o o

LHS variable value is maintained incrementally under changes to RHS
variable values

Can be user defined (by implementing Invariant<LS>)

Examples

var{int} x(m) :=7

var{int} y(m) <- (x+5)=*x;

x <-y; // not allowed!!!
y = 3; // not allowed!!!
var{int} c[i in 1..n]J(m) := (i % 6);

var{int} C(m) <- sum(i in 1..n)(c[il);

var{set{int}} Z(m) <- collect(i in n : c[i] == 0)(i);
var{int} q(m) <- c[x];
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Differentiable objects Mctaheuristics

Constraint<LS>
ConstraintSystem<LS>
Function<LS>

Defined over incremental variables

Implicitly attached to a model object

Has a value (or a number of violations)

Maintains value incrementally under changes to variable values
Supports delta evaluations

Can be user defined (by extending UserConstraint<LS>)
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Constraint<LS>

Interface

int getAssignDelta(var{int},int)

int getAssignDelta(var{int}[],int[])
int getSwapDelta(var{int},var{int})
var{int}[] getVariables()
var{boolean} isTrue()

var{int} violations()

var{int} violations(var{int})

Software Tools
Descriptions
Construction Heuristics
Metaheuristics
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ConstraintSystem<LS> extends Constraint<i:gs-

A conjunction of constraints J

Interface

Constraint<LS> post (expr{boolean})
Constraint<LS> post(expr{boolean},int)
Constraint<LS> post(Constraint<LS>)
Constraint<LS> post(Constraint<LS>,int)

25
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ion Heuristics

ConstraintSystem<LS> extends Constraint<i:gs-

Examples

Solver<LS> m();

var{int} x[1..10](m);
var{int} y[1..10]1(m, 1..2);
int wli in 1..10] = 2%i;
int C[1..2] = 95;

ConstraintSystem<LS> S(m);

S.post(x[1] >= 7);

S.post(sum(i in 3..7) (x[il*x[i] <= x[10]);
S.post (Al1Different<LS>(x));

S.post (Knapsack<LS>(y, w, C));

26



Software Tools

Overview

Variables Constraint System(s)

Model

Function(s)

Objective Function

Invariants

Maintains sets of "good”
variables

Select variables and modify
values



Example

N-Queens problem
Input: A chessboard of size N x N

Task: Find a placement of n queens
on the board such that no two queens
are on the same row, column, or
diagonal.

Software Tools
Descriptions
Construction Heuristics
Metaheuristics
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Software Tools

A CP Example

import cotfd;

int t0 = System.getCPUTime();
Solver<CP> m();
intn = 8;
range S = 1..n;
var<CP>{int} q[i in S](m,S);
Integer c(0);
solve<m> {
m.post(alldifferent(all(i in S) q[i] + i));
m.post(alldifferent(all(i in S) q[i] — i));
m.post(alldifferent(q));
} using {
forall(i in S : !q[i].bound()) by (q[i].getSize())
tryall<m>(v in S : q[i].memberOf(v))
m.post(q[i] == v);
onFailure m.post(q[i]!=v);
cout << q << endl;
c:=c+1;
3

cout << "Nb = " << ¢ << endl;

cout << "Time = " << System.getCPUTime() — t0 << endl;
cout << "#choices = " << m.getNChoice() << endl;

cout << "#fail = " << m.getNFail() << endl;
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An LS Example

import cotls;

int n = 16;

range Size = 1..n;
UniformDistribution distr(Size);

Solver<LS> m();
var{int} queen[Size](m,Size) := distr.get();
ConstraintSystem<LS> S(m);

S.post(alldifferent(queen));
S.post(alldifferent(all(i in Size) queen[i] + i));
S.post(alldifferent(all(i in Size) queen[i] — i));
m.close();

int it = 0;
while (S.violations() > 0 && it < 50 * n) {
select(q in Size, v in Size : S.getAssignDelta(queen[q],v) < 0) {
queen[q] := v;

cout<<"chng @ "<<it<<": queen["<<q<<"]:="<<v<<" viol:

endl;

it =it + 1;
}
cout << queen << endl;

Software Tools

"< <S.violations() <<

32



Software Tools
Descriptions
Construction Heuristics

How to learn more Micraheuristics

Constraint-Based Local Search
Comet Tutorial P. Van Hentenryck, L. Michel
in the Comet distribution MIT Press, 2005

ISBN-10: 0-262-22077-6

o Implement, experiment, fail, think, try again!
o See: http://www.imada.sdu.dk/ marco/Misc/comet.html
@ Ask: http://forums.dynadec.com
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Outline

Constraint-Based Local Search with Come

2. Descriptions

Complete Search Methods
Incomplete Search Methods

Random Restart
Rollout/Pilot Method
Beam Search

Iterated Greedy
GRASP

tTl\/I

Software Tools
Descriptions

Construction Heuristics

Metaheuristics
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Descriptions

Guidelines for Text Writing

o Outline:
1. word (discursive) description

2. precise algorithm using mathematical notation and pseudo-code
3. implementation details, ie, abstract data structures
4. computational (runtime, space) analysis

o Refer to floating environments like Algorithms and Figures that you
present in the text

o Cite your sources in a proper and detailed way, they must be retrievable
by the reader. If you do not do it then you are committing plagiarism.

o Before submitting: run spell checker and then read again and again and
again

@ Mathematical notation makes things clearer and precise and the overall
descriptions more concise. (but use latex!)

@ As a reader you should ask yourself whether you would be able to
reproduce the algorithm in exactly the same way as described.

35



Software Tools
Descriptions
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Outline Conatruction 1

3. Construction Heuristics
Complete Search Methods
Incomplete Search Methods
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Complete Search Methods Moo

Tree search:

Uninformed Search Informed Search
o Breadth-first search o best-first search, aka, greedy
@ Uniform-cost search search
o Depth-first search @ A" search
o Depth-limited search o lterative Deepening A*
o lterative deepening search @ Memory bounded A*
o Bidirectional Search ® Recursive best first
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Constraint Satisfaction and Backtracking

1) Which variable should we assign next,
and in what order should its values be tried?

@ Select-Initial-Unassigned-Variable

@ Select-Unassigned-Variable
e most constrained first = fail-first heuristic
= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)
o least constrained last

Eg.: max degree, farthest, earliest due date, etc.

@ Order-Domain-Values

o greedy
o least constraining value heuristic

(leaves maximum flexibility for subsequent variable assignments)
e maximal regret

implements a kind of look ahead

Construction Heuristics
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Construction Heuristics

2) What are the implications of the current variable assignments for the
other unassigned variables?

Propagating information through constraints:

o Implicit in Select-Unassigned-Variable
o Forward checking (coupled with Minimum Remaining Values)

o Constraint propagation in CSP

o arc consistency: force all (directed) arcs uv to be consistent:
J avalue in D(v) : ¥V values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each
assignment (Maintaining Arc Consistency)

Applied repeatedly

[Can you find preprocessing rules for the graph coloring problem?]

43



Software Tools
Descriptions

Propagation: An Example Metehearictica T
nsmmU
WA NT Q NSW 14 SA T
Initial domains |[R G B|RGB|RGB|RGB|RGB|[RGB|RGB
After WA=red |® GB|RGB/RGB|RGB| GB|RGB
After O=green |® Bl ©@ |[R B|RGB BlrG B
After V=bive |® Bl © |R RGB

Figure 5.6  The progress of a map-coloring search with forward checking. WA =red
is assigned first; then forward checking deletes red from the domains of the neighboring
variables NT and SA. After Q@ = green, green is deleted from the domains of NT, SA, and
NSW. After V = blue, blue is deleted from the domains of NSW and SA4, leaving SA with
no legal values.
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Construction Heuristics

3) When a path fails — that is, a state is reached in which a variable has no
legal values can the search avoid repeating this failure in subsequent
paths?

Backtracking-Search
o chronological backtracking, the most recent decision point is revisited

@ backjumping, backtracks to the most recent variable in the conflict set
(set of previously assigned variables connected to X by constraints).

45
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Descriptions

Dealing with Objectives Conetrostion Heursic

Metaheuristics
Optimization Problems

A* search

@ The priority assigned to a node z is determined by the function

f() = g(z) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x.
@ It is optimal if A(z) is an

o admissible heuristic: never overestimates the cost to reach the goal
o consistent: h(n) < c(n,a,n’) + h(n')

a7
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A* search

(@) The initial state N>
Neamt 20000365

(b) After expanding Arad
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Figure 32 A simplified road map of part of Romania.
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(f) After expanding Pitesti
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Figure43  Stages in an A" search for Bucharest. Nodes are labeled with f = g + h. The
h values are the straight-line distances to Bucharest taken from Figure 4.1
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Construction Heuristics

A* search

Possible choices for admissible heuristic functions

e 6 o o

optimal solution to an easily solvable relaxed problem
optimal solution to an easily solvable subproblem
learning from experience by gathering statistics on state features

preferred heuristics functions with higher values (provided they do not
overestimate)

if several heuristics available /1, hs, ..., h,, and not clear which is the
best then:

h(z) = max{hi(x),..., hy(x)}
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Metaheuristics

A* search

Drawbacks

@ Time complexity: In the worst case, the number of nodes expanded is
exponential,
(but it is polynomial when the heuristic function h meets the following
condition:
|h(z) — h*(z)| < O(log h*(z))

h* is the optimal heuristic, the exact cost of getting from x to the goal.)

@ Memory usage: In the worst case, it must remember an exponential
number of nodes.
Several variants: including iterative deepening A* (IDA*),
memory-bounded A* (MA*) and simplified memory bounded A* (SMA*)
and recursive best-first search (RBFS)
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Construction Heuristics
Incomplete Search Mevahearistcs

Complete search is often better suited when ...
@ proofs of insolubility or optimality are required;
@ time constraints are not critical;

@ problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...
@ non linear constraints and non linear objective function;
@ reasonably good solutions are required within a short time;
@ problem-specific knowledge is rather limited.
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. Construction Heuristics
Greedy algorithms e,

Greedy algorithms (derived from best-first)
o Strategy: always make the choice that is best at the moment
@ Single descent in the search tree

o They are not generally guaranteed to find globally optimal solutions
(but sometimes they do: Minimum Spanning Tree, Single Source
Shortest Path, etc.)

We will see problem sepcific examples
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Outline

4. Metaheuristics
Random Restart
Rollout/Pilot Method
Beam Search
Iterated Greedy
GRASP
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Construction Heuristics

Metaheuristics
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Metaheuristics

On backtracking framework
(beyond best-first search)

Random Restart

Bounded backtrack
Credit-based search
Limited Discrepancy Search
Barrier Search

Randomization in Tree Search

Software Tools
Descriptions
Construction Heuristics
Metaheuristics

Outside the exact framework
(beyond greedy search)

Random Restart
Rollout/Pilot Method

@ Beam Search

o lIterated Greedy
GRASP

(Adaptive lterated Construction
Search)

o (Multilevel Refinement)

57
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Construction Heuristics
Bounded backtrack Metaheuristics

Bounded-backtrack search:

bbs(10)

Depth-bounded, then bounded-backtrack search:

dbs(2, bbs(0))
http://4c.ucc.ie/"hsimonis/visualization/techniques/partial_search/main.htm
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Limited Discrepancy Search Metaheuristics

Limited Discrepancy Search (LDS)

o Key observation that often the
heuristic used in the search is
nearly always correct with just a
few exceptions.

@ Explore the tree in increasing
number of discrepancies,
modifications from the heuristic
choice.

o Eg: count one discrepancy if
second best is chosen
count two discrepancies either if
third best is chosen or twice the
second best is chosen

@ Control parameter: the number of
discrepancies



Randomization in Tree Search Metaheuristics

The idea comes from complete search: the important decisions are made up
in the search tree (backdoors) ~~ random selections + restart strategy

Random selections
@ randomization in variable ordering:

breaking ties at random

use heuristic to rank and randomly pick from small factor from the best
random pick among heuristics

random pick variable with probability depending on heuristic value

@ randomization in value ordering:

o just select random from the domain
Restart strategy in backtracking

o Example: S, = (1,1,2,1,1,2,4,1,1,2,1,1,4,8,1,...)
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Rollout/Pilot Method Meraheuristics

Derived from A*

o Each candidate solution is a collection of m components
S = 181,82+, 8m)-

@ Master process adds components sequentially to a partial solution
Sk = (81,82, .- 5k)

@ At the k-th iteration the master process evaluates feasible components
to add based on an heuristic look-ahead strategy.

@ The evaluation function H(Sy1) is determined by sub-heuristics that
complete the solution starting from S,

@ Sub-heuristics are combined in H(Sy11) by

o weighted sum
o minimal value
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Metaheuristics

Speed-ups:

@ halt whenever cost of current partial solution exceeds current upper
bound

@ evaluate only a fraction of possible components
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Beam Search R

Again based on tree search:
@ maintain a set B of bw (beam width) partial candidate solutions

@ at each iteration extend each solution from B in fw (filter width)
possible ways

@ rank each bw x fw candidate solutions and take the best bw partial
solutions

@ complete candidate solutions obtained by B are maintained in By

@ Stop when no partial solution in B is to be extended

68



Iterated Greedy Meteheurintcs

(aka, Adaptive Large Neighborhood Search, see later)

Key idea: use greedy construction

@ alternation of construction and deconstruction phases

@ an acceptance criterion decides whether the search continues from the
new or from the old solution.

Iterated Greedy (IG):
determine initial candidate solution s

while termination criterion is not satisfied do
ri=s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s

based on acceptance criterion,
keep s or revert to s :=r
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GRASP

Greedy Randomized Adaptive Search Procedure

Metaheuristics

Key Idea: Combine randomized constructive search with subsequent local
search.

Motivation:

o Candidate solutions obtained from construction heuristics can often be
substantially improved by local search.

@ Local search methods often require substantially fewer steps to reach
high-quality solutions when initialized using greedy constructive search
rather than random picking.

o By iterating cycles of constructive + local search, further performance
improvements can be achieved.
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Metaheuristics

Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do
generate candidate solution s using
subsidiary greedy randomized constructive search
perform subsidiary local search on s

o Randomization in constructive search ensures that a large number of
good starting points for subsidiary local search is obtained.

o Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

o Variants of GRASP without local search phase

(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.
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Metaheuristics

Restricted candidate lists (RCLs)

o Each step of constructive search adds a solution component selected
uniformly at random from a restricted candidate list (RCL).

@ RCLs are constructed in each step using a heuristic function h.

o RCLs based on cardinality restriction comprise the k best-ranked solution
components. (k is a parameter of the algorithm.)

o RCLs based on value restriction comprise all solution components [ for
which A(l) < hpmin + @ (hmaz — himin ),
where h,,in» = minimal value of i and /... = maximal value
of h for any [. (« is a parameter of the algorithm.)

o Possible extension: reactive GRASP (e.g., dynamic adaptation of «
during search)
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Example: Squeaky Wheel Metaheurisics

Key idea: solutions can reveal problem structure which maybe worth to
exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create
troubles.

Squeaky Wheel
o Constructor: greedy algorithm on a sequence of problem elements.

@ Analyzer: assign a penalty to problem elements that contribute to flaws
in the current solution.

@ Prioritizer: uses the penalties to modify the previous sequence of problem
elements. Elements with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other
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