
DM811

Heuristics for Combinatorial Optimization

Lecture 6
SAT

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Outline
Code Speed up
SATOutline

1. Code Speed up

2. SAT

2



Outline
Code Speed up
SATOutline

1. Code Speed up

2. SAT

4



Outline
Code Speed up
SATWhere do speedups come from?

Where can maximum speedup be achieved?
How much speedup should you expect?

5



Outline
Code Speed up
SATCode Tuning

Caution: proceed carefully! Let the optimizing compiler do its work!

optimizing flags (C++ -O3, java http://java.sun.com/developer/
onlineTraining/Programming/JDCBook/perfTech.html)

just-in-time-compilation: it converts code at runtime prior to executing it
natively, for example bytecode into native machine code. (in java done by
deafult – to disable -Djava.compiler=NONE – in C++ possible via
llvm-g++
http://vmakarov.fedorapeople.org/spec/2011/llvmgcc64.html)

Cache aware (-m32 vs -m64)

Profiling (java: java -Xrunhprof:cpu=times prog information on the
time spent in each method of the program written to java.hprof.txt.
C++: gprof, instruments)

6

http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perfTech.html
http://java.sun.com/developer/onlineTraining/Programming/JDCBook/perfTech.html
http://vmakarov.fedorapeople.org/spec/2011/llvmgcc64.html


Outline
Code Speed up
SAT

Expression Rules: Recode for smaller instruction counts.

Loop and procedure rules: Recode to avoid loop or procedure call
overhead.

Hidden costs of high-level languages

String comparisons in C: proportional to length of the string, not
constant

Object construction / de-allocation: very expensive

Matrix access: row-major order 6= column-major order

Exploit algebraic identities

Avoid unnecessary computations inside the loops
7



Outline
Code Speed up
SATWhere Speedups Come From?

McGeoch reports conventional wisdom, based on studies in the literature.

Concurrency is tricky: bad -7x to good 500x
Classic algorithms: to 1trillion and beyond
Data-aware: up to 100x
Memory-aware: up to 20x
Algorithm tricks: up to 200x
Code tuning: up to 10x
Change platforms: up to 10x

8



Outline
Code Speed up
SATRelevant Literature

Bentley, Writing Efficient Programs; Programming Pearls (Chapter 8
Code Tuning)

Kernighan and Pike, The Practice of Programming (Chapter 7
Performance).
Shirazi, Java Performance Tuning, O’Reilly

McCluskey, Thirty ways to improve the performance of your Java
program. Manuscript and website: www.glenmccl.com/jperf

Randal E. Bryant e David R. O’Hallaron: Computer Systems: A
Programmer’s Perspective, Prentice Hall, 2003, (Chapter 5)

9

www.glenmccl.com/jperf


Outline
Code Speed up
SATOutline

1. Code Speed up

2. SAT

10



Outline
Code Speed up
SATSAT Problem

Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

11



Outline
Code Speed up
SATSAT Problem

Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

11



Outline
Code Speed up
SATMotivation

From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal
Control, Protocol Design, Routing, Combinatorial problems, Equivalence
Checking, etc.

SAT used to solve many other problems!

12



Outline
Code Speed up
SATSAT Problem

Satisfiability problem in propositional logic

Definitions:

Formula in propositional logic: well-formed string that may contain
propositional variables x1, x2, . . . , xn;
truth values > (‘true’), ⊥ (‘false’);
operators ¬ (‘not’), ∧ (‘and’), ∨ (‘or’);
parentheses (for operator nesting).

Model (or satisfying assignment) of a formula F : Assignment of truth
values to the variables in F under which F becomes true (under the
usual interpretation of the logical operators)

Formula F is satisfiable iff there exists at least one model of F ,
unsatisfiable otherwise.

13



Outline
Code Speed up
SAT

SAT Problem (decision problem, search variant):

Given: Formula F in propositional logic
Task: Find an assignment of truth values to variables in F that renders
F true, or decide that no such assignment exists.

SAT: A simple example

Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

Task: Find an assignment of truth values to variables x1, x2 that
renders F true, or decide that no such assignment exists.

14



Outline
Code Speed up
SAT

Definitions:

A formula is in conjunctive normal form (CNF) iff it is of the form

m∧
i=1

ki∨
j=1

lij = (l11 ∨ . . . ∨ l1k1
) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm

)

where each literal lij is a propositional variable or its negation. The
disjunctions ci = (li1 ∨ . . . ∨ liki

) are called clauses.

A formula is in k-CNF iff it is in CNF and all clauses contain exactly k
literals (i.e., for all i, ki = k).

In many cases, the restriction of SAT to CNF formulae
is considered.
For every propositional formula, there is an equivalent formula in 3-CNF.

15



Outline
Code Speed up
SAT

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

F is in CNF.
Is F satisfiable?
Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F .

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic
formula F?

16



Outline
Code Speed up
SATExercise

Definition

(Maximum) K-Satisfiability (SAT)
Input: A set U of variables, a collection C of disjunctive clauses of at most k
literals, where a literal is a variable or a negated variable in U . k is a
constant, k ≥ 2.
Task: A truth assignment for U or a truth assignment that maximizes the
number of clauses satisfied.

1. design one or more construction heuristics for the problem
2. show how the decision version of the graph coloring problem (GCP) can

be encoded in a SAT problem
3. show how the constraint satisfaction problem (CSP) can be encoded in a

SAT problem
4. are the results of the two previous points proves of the NP-completeness

of the CSP and GCP?
5. devise preprocessing rules, ie, polynomial time simplification rules

17



Outline
Code Speed up
SATPre-processing

Pre-processing rules: low polynimial time procedures to decrease the size of
the problem instance.

Typically applied in cascade until no rule is effective anymore.

18



Outline
Code Speed up
SATExamples in SAT

1. eliminate duplicate literals
2. eliminate tautologies: x1 ∨ ¬x1...

3. eliminate subsumed clauses
4. eliminate clauses with pure literals
5. eliminate unit clauses
6. unit propagation

19



Outline
Code Speed up
SATSimple data structure for unit propagation

20



Outline
Code Speed up
SATConstruction heuristics

Variable selection heuristics
aim: minimize the search space
plus: could compensate a bad value selection

Value selection heuristics
aim: guide search towards a solution (or conflict)
plus: could compensate a bad variable selection

Restart strategies
aim: avoid heavy-tail behavior [GomesSelmanCrato’97]
plus: focus search on recent conflicts when combined with dynamic
heuristics

21



Outline
Code Speed up
SATVariable selection heuristics

Based on the occurrences in the (reduced) formula

Maximal Occurrence in clauses of Minimal Size (MOMS, Jeroslow-Wang)

Variable State Independent Decaying Sum (VSIDS)

original idea (zChaff): for each conflict, increase the score of involved
variables by 1, half all scores each 256 conflicts [MoskewiczMZZM2001]

improvement (MiniSAT): for each conflict, increase the score of involved
variables by δ and increase δ := 1.05δ [EenSörensson2003]

22



Outline
Code Speed up
SATValue selection heuristics

Based on the occurrences in the (reduced) formula

examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal
Size (MOMS), look-aheads

23


	Code Speed up
	SAT

