DM811 Heuristics for Combinatorial Optimization

> Lecture 9 Examples

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Examples

Iterative Improvement for TSP

is it really?

Examples

Iterative Improvement for TSP

```
TSP-2opt-first(s)
input: an initial candidate tour s \in S(\in)
output: a local optimum s \in S_{\pi}
 Improvement=TRUE;
while Improvement is TRUE do
    Improvement=FALSE:
    for i = 1 to n - 1 do
        for j = i + 1 to n do
             if P[i] + 1 = P[j] or P[j] + 1 = P[i] then continue
             if P[i] + 1 \ge n or P[j] + 1 \ge n then continue
              \Delta_{ii} = d(\pi_{P[i]}, \pi_{P[i]}) + d(\pi_{P[i]+1}, \pi_{P[i]+1}) +
                          -d(\pi_{P[i]}, \pi_{P[i]+1}) - d(\pi_{P[i]}, \pi_{P[i]+1})
             if \Delta_{ij} < 0 then
                UpdateTour(s,i,j)
                 Improvement=TRUE
```

Summary: Local Search Algorithms (as in [Hoos, Stützle, 2005])

For given problem instance π :

- 1. search space S_{π}
- 2. neighborhood relation $\mathcal{N}_{\pi} \subseteq S_{\pi} \times S_{\pi}$
- 3. evaluation function $f_{\pi}: S \to \mathbf{R}$
- 4. set of memory states M_π
- 5. initialization function init : $\emptyset \to S_{\pi} \times M_{\pi}$)
- 6. step function step : $S_{\pi} \times M_{\pi} \rightarrow S_{\pi} \times M_{\pi}$

7. termination predicate terminate : $S_{\pi} \times M_{\pi} \rightarrow \{\top, \bot\}$

Outline

1. Examples

Examples

- Permutations
 - TSP
 - SMWTP
- Assignments
 - SAT
 - Coloring
 - Parallel machines
- Sets
 - Max Weighted Independent Set
 - Steiner tree

Single Machine Total Weighted Tardiness

Given: a set of n jobs $\{J_1, \ldots, J_n\}$ to be processed on a single machine and for each job J_i a processing time p_i , a weight w_i and a due date d_i .

Task: Find a schedule that minimizes the total weighted tardiness $\sum_{i=1}^{n} w_i \cdot T_i$ where $T_i = \max\{C_i - d_i, 0\}$ (C_i completion time of job J_i)

Example:

Job		J_1	J_2	J_3	J_4	J_5	J_6
Processing	Time	3	2	2	3	4	3
Due date		6	13	4	9	7	17
Weight		2	3	1	5	1	2
Sequence $\phi = J_3, J_1, J_5, J_4, J_1, J_6$							
Job	J_3	J_1	J_5	J_4	J_2	J_6	-
C_i	2	5	9	12	14	17	-
T_i	0	0	2	3	1	0	
$w_i \cdot T_i$	<i>i</i> 0	0	2	15	3	0	

The Max Independent Set Problem

Also called "stable set problem" or "vertex packing problem". **Given:** an undirected graph G(V, E) and a non-negative weight function ω on V ($\omega : V \to \mathbf{R}$)

Task: A largest weight independent set of vertices, i.e., a subset $V' \subseteq V$ such that no two vertices in V' are joined by an edge in E.

Related Problems:

Vertex Cover

Given: an undirected graph G(V, E) and a non-negative weight function ω on V ($\omega : V \to \mathbf{R}$) **Task:** A smallest weight vertex cover, i.e., a subset $V' \subseteq V$ such that each edge of G has at least one endpoint in V'.

Maximum Clique

Given: an undirected graph G(V, E)**Task:** A maximum cardinality clique, i.e., a subset $V' \subseteq V$ such that every two vertices in V' are joined by an edge in E

Graph Partitioning

Input: A graph G = (V, E), weights $w(v) \in Z^+$ for each $v \in V$ and $l(e) \in Z^+$ for each $e \in E$. **Task:** Find a partition of V into disjoint sets V_1, V_2, \ldots, V_m such that $\sum_{v \in V_i} w(v) \leq K$ for $1 \leq i \leq m$ and such that if $E' \subseteq E$ is the set of edges that have their two endpoints in two different sets V_i , then $\sum_{e \in E'} l(e)$ is minimal.

Consider the specific case of graph bipartitioning, that is, the case |V| = 2nand K = n and $w(v) = 1, \forall v \in V$.

Example: Scheduling in Parallel Machines

Total Weighted Completion Time on Unrelated Parallel Machines Problem

Input: A set of jobs J to be processed on a set of parallel machines M. Each job $j \in J$ has a weight w_j and processing time p_{ij} that depends on the machine $i \in M$ on which it is processed.

Task: Find a schedule of the jobs on the machines such that the sum of weighted completion time of the jobs is minimal.

Example: Steiner Tree

Steiner Tree Problem

Input: A graph G = (V, E), a weight function $\omega : E \mapsto \mathbb{N}$, and a subset $U \subseteq V$.

Task: Find a Steiner tree, that is, a subtree $T = (V_T, E_T)$ of G that includes all the vertices of U and such that the sum of the weights of the edges in the subtree is minimal.

Vertices in U are the special vertices and vertices in $S = V \setminus U$ are Steiner vertices.

