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Conditional Independence
Inference in BNFactorization

BN encode local conditional independences

Pr(Xi | X−i) = Pr(Xi | pa(Xi))

Joint probability factorization (the global semantics simplifies to):

Pr(X1, . . . , Xn) =

n∏
i=1

Pr(Xi | X1, . . . , Xi−1) (chain rule)

=

n∏
i=1

Pr(Xi | pa(Xi)) (by construction)
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Conditional Independence
Inference in BNImportant Rules

When working with Bayesian Networks, the following probability theory rules
are worth remembering:

I Product rule

I Sum rule (marginalization)

I Bayes rule

I Factorization
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Conditional Independence
Inference in BNThree Examples

p(a, b, c) = p(a|c)p(b|c)p(c)

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a|c)p(b|c)p(c)

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a|c)p(b|c)p(c)
p(c)

= p(a|c)p(b|c)

p(a, b, c) = p(a)p(c|a)p(b|c)

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a)p(c|a)p(b|c)

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(c|a)p(b|c)
p(c)

= p(a|c)p(b|c)

p(a, b, c) = p(a)p(b)p(c|a, b)

p(a, b) =
∑
c

p(a, b, c) =
∑
c

p(a)p(b)p(c|a, b) = p(a)p(b)

p(a, b|c) =
p(a, b, c)

p(c)
=

p(a)p(b)p(c|a, b)
p(c)
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Conditional Independence
Inference in BNExample

p(F = 0 | G = 0) =?
p(F = 0 | G = 0) ≥ p(F = 0)
p(F = 0 | G = 0, B = 0) =?
p(F = 0 | G = 0, B = 0) ≤ p(F = 0 | G = 0) (not conditional independent)
B explains away F
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Conditional Independence
Inference in BNd-separation

Definition (d-separation)

Two distinct variables A and B in a causal network are d-separated (“d” for
“directed graph”) if for all paths between A and B, there is an intermediate
variable C (distinct from A and B) such that either

1. the connection is tail-to-tail or head-to-tail and C is instantiated or
2. the connection is head-to-head, and neither C nor any of C’s

descendants have received evidence.
If A and B are not d-separated, we call them d-connected.

If (1) then A indep. of B given C
If (2) then A indep. of B
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Conditional Independence
Inference in BN
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Conditional Independence
Inference in BNMarkov Blanket

p(xi | xj 6=i) =
p(x1, . . . ,xD)∑
xi
p(x1, . . . ,xD)

=

∏
k p(xk | pak)∑

xi

∏
k(xk | pak)

Each node is conditionally
independent of all others given its
Markov blanket: parents + children +
co-parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Conditional Independence
Inference in BNAlgebra of Potentials

I General algebra of multiplication and marginalization on tables.

I For each outcome a variable has a corresponding state. States are
mutually exclusive and exhaustive. The set of states associated with a
variable A is denoted by sp(A) = (a1, a2, . . . , an).

I Potential φ : sp(X )→ R

I dom(φ(A,B|C)) = {A,B,C} domain

I multiplication: φ1φ2 : dom(φ1φ2) = dom(φ1) ∪ dom(φ2)

I marginalization:
∑

A φ has domain dom(φ) \ {A}

I unit potential property:
∑

A P (A | V) = 1

I projection for marginalization. Eg: if A and B are marginalized out of
φ(A,B,C), we say φ is projected down to C
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Conditional Independence
Inference in BNMoralization

Converting a directed graph into an undirected graph:
On the undirected:

p(x) =
1

Z

∏
C

ψC(xc)

On the directed:

p(x) = p(x1)p(x2)p(x3)p(x4 | x1, x2, x3)

we introduce and edge for every arc and we marry parents
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Conditional Independence
Inference in BNInference tasks

~e assignment of values to some variables E (instantiation, evidence)

I Probability of Evidence Pr(~e)
Example: probability that an individual will come out positive on both
tests Pr(T1 = +ve, T2 = +ve)
overall reliability of the system Pr(S = avail)
related: node marginals query: probability Pr(x | e) for each X and for
each of x ∈ X.

I Most Probable Explanation (MPE) arg max~q∈Q Pr(~q | ~e),Q = E
Example: find the most likely group, dissected by sex and condition, that
will yield negative results for both tests (~e = {T1 = -ve;T2 = -ve} and
Q = {S,C})

I Maximum a Posteriori Hypothesis (MAP) arg max~q∈Q Pr(~q | ~e),Q ⊆ E
Example: find most likely configuration of the two fans given that the
system is unavailable (~e = {S = unavail}, Q = {F1, F2}).
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Conditional Independence
Inference in BNInference by enumeration

Sum out variables from the joint without actually constructing its explicit
representation

Simple query on the burglary network:

Pr(B | j,m) = Pr(B, j,m)/P (j,m)
= αPr(B, j,m)
= α

∑
e

∑
a Pr(B, e, a, j,m)

B E

J

A

M

Rewrite full joint entries using product of CPT entries:

Pr(B | j,m) = α
∑

e

∑
a Pr(B)P (e) Pr(a | B, e)P (j | a)P (m | a)

= αPr(B)
∑

e P (e)
∑

a Pr(a | B, e)P (j | a)P (m | a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Conditional Independence
Inference in BNEnumeration algorithm

function Enumeration-Ask(X,e,bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables {X} ∪ E ∪ Y

Q(X )← a distribution over X, initially empty
for each value xi of X do

Q(xi)←Enumerate-All(bn.Vars,e ∪ {X = xi})
return Normalize(Q(X ))

function Enumerate-All(vars,e) returns a real number
if Empty?(vars) then return 1.0
Y←First(vars)
if Y has value y in e

then return P (y | parent(Y )) × Enumerate-All(Rest(vars),e)
else return

∑
y P (y | parent(Y )) × Enumerate-All(Rest(vars),e ∪ {Y =

y})
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Conditional Independence
Inference in BNEvaluation tree

P(j|a)
.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a) P(j|a)

.90

P(m|a)
.70 .01

P(m|    a)

.05
P(j|    a)

P(b)
.001

P(e)
.002

P(   e)
.998

P(a|b,e)
.95 .06

P(   a|b,   e)
.05
P(   a|b,e)

.94
P(a|b,   e)

Enumeration is inefficient: repeated computation
e.g., computes P (j | a)P (m | a) for each value of e
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Conditional Independence
Inference in BNInference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation
Pr(B | j,m)

= αPr(B)︸ ︷︷ ︸
B

∑
e
P (e)︸︷︷︸
E

∑
a

Pr(a | B, e)︸ ︷︷ ︸
A

P (j | a)︸ ︷︷ ︸
J

P (m | a)︸ ︷︷ ︸
M

= αPr(B)

∑
e
P (e)

∑
a

Pr(a | B, e)P (j | a)fM (a)

= αPr(B)

∑
e
P (e)

∑
a

Pr(a | B, e)fJ(a)fM (a)

= αPr(B)

∑
e
P (e)

∑
a
fA(a, b, e)fJ(a)fM (a)

= αPr(B)

∑
e
P (e)fĀJM (b, e) (sum out A)

= αPr(B)fĒĀJM (b) (sum out E)
= αfB(b)× fĒĀJM (b)
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Conditional Independence
Inference in BNVariable elimination: Basic operations

Summing out a variable from a product of factors:

1. move any constant factors outside the summation:

∑
x
f1× · · · × fk = f1× · · · × fi

∑
x
fi+1× · · · × fk =

f1× · · · × fi× fX̄
assuming f1, . . . , fi do not depend on X

2. add up submatrices in pointwise product of remaining factors:

Eg: pointwise product of f1 and f2:
f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk, z1, . . . , zl)

= f(x1, . . . , xj , y1, . . . , yk, z1, . . . , zl)
E.g., f1(a, b)× f2(b, c) = f(a, b, c)
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Conditional Independence
Inference in BNIrrelevant variables

Consider the query P (JohnCalls | Burglary = true)

P (J | b) = αP (b)
∑
e

P (e)
∑
a

P (a | b, e)P (J | a)
∑
m

P (m | a)

Sum over m is identically 1; M is irrelevant to the
query

B E

J

A

M

Theorem

Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E = {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so MaryCalls is irrelevant
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Conditional Independence
Inference in BNIrrelevant variables contd.

Defn: moral graph of DAG Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral graph

Theorem
Y is irrelevant if m-separated from X by E

For P (JohnCalls | Alarm = true), both
Burglary and Earthquake are irrelevant B E

J

A

M
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Conditional Independence
Inference in BNComplexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost (with variable elimination) are O(dkn), k number of

parents
– hence time and space cost are linear in n and k bounded by a constant

Multiply connected networks:
– can reduce 3SAT to exact inference =⇒ NP-hard
– equivalent to counting 3SAT models =⇒ #P-complete
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Conditional Independence
Inference in BN

If we want the posteriror of each variable then even if poly tree O(n)O(n)
Join tree reduce the complexity to O(n)
Idea: join individual nodes such that the resulting network is a polytree
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Conditional Independence
Inference in BNChains

We want to infer maringal of xj with no evidence
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Conditional Independence
Inference in BNChains

We want to infer maringal of xj with no evidence
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Conditional Independence
Inference in BNInference by stochastic simulation

Basic idea:

I Draw N samples from a sampling distribution S
I Compute an approximate posterior probability P̂
I Show this converges to the true probability P

Coin

0.5

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process

whose stationary distribution is the true posterior
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Conditional Independence
Inference in BNSampling from an empty network

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution

Pr(X1, . . . , Xn)

x← an event with n elements
for i = 1 to n do

xi← a random sample from Pr(Xi | parents(Xi))
given the values of pa(Xi) in x

return x

Ancestor sampling
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Conditional Independence
Inference in BNExample

Cloudy

RainSprinkler

 Wet
Grass

C

T
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T
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S R

T T
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F T
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.90
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.50

.01
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Conditional Independence
Inference in BNSampling from an empty network contd.

Probability that PriorSample generates a particular event

SPS(x1 . . . xn) = P (x1 . . . xn)

i.e., the true prior probability

E.g., SPS(t, f, t, t) = 0.5× 0.9× 0.8× 0.9 = 0.324→ P (t, f, t, t)

Proof: Let NPS(x1 . . . xn) be the number of samples generated for event
x1, . . . , xn. Then we have

lim
N→∞

P̂ (x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)/N

= SPS(x1, . . . , xn)

=
n∏

i=1

P (xi|parents(Xi)) = P (x1 . . . xn)

 That is, estimates derived from PriorSample are consistent
Shorthand: P̂ (x1, . . . , xn) ≈ P (x1 . . . xn)
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Conditional Independence
Inference in BNRejection sampling

P̂r(X|e) estimated from samples agreeing with e

function Rejection-Sampling(X,e,bn,N) returns an estimate of P (X |e)
local variables: N, a vector of counts over X, initially zero

for j = 1 to N do
x←Prior-Sample(bn)
if x is consistent with e then

N[x]←N[x]+1 where x is the value of X in x
return Normalize(N[X])

E.g., estimate Pr(Rain|Sprinkler = true) using 100 samples
27 samples have Sprinkler = true

Of these, 8 have Rain = true and 19 have Rain = false.

P̂r(Rain|Sprinkler = true) = Normalize(〈8, 19〉) = 〈0.296, 0.704〉
Similar to a basic real-world empirical estimation procedure
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35



Conditional Independence
Inference in BNAnalysis of rejection sampling

Rejection sampling returns consistent posterior estimates

Proof:
P̂r(X|e) = αNPS(X, e) (algorithm defn.)

= NPS(X, e)/NPS(e) (normalized by NPS(e))
≈ Pr(X, e)/P (e) (property of PriorSample)
= Pr(X|e) (defn. of conditional probability)

Problem: hopelessly expensive if P (e) is small
P (e) drops off exponentially with number of evidence variables!
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Conditional Independence
Inference in BNLikelihood weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function Likelihood-Weighting(X,e,bn,N) returns an estimate of P (X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j = 1 to N do
x,w←Weighted-Sample(bn)
W[x ]←W[x ] + w where x is the value of X in x

return Normalize(W[X ])

function Weighted-Sample(bn,e) returns an event and a weight

x← an event with n elements; w← 1
for i = 1 to n do

if Xi has a value xi in e
then w←w × P (Xi = xi | parents(Xi))
else xi← a random sample from Pr(Xi | parents(Xi))

return x, w
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Conditional Independence
Inference in BNLikelihood weighting example

P (Rain|Sprinkler = true,WetGrass = true)

Cloudy

RainSprinkler

 Wet
Grass
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T
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P(R|C)C

T
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P(S|C)

S R

T T
T F
F T
F F

.90
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P(C)
.50

.01

w = 1.0

× 0.1 × 0.99 = 0.099
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Conditional Independence
Inference in BNLikelihood weighting analysis

Likelihood weighting returns consistent estimates

Sampling probability for WeightedSample is

SWS(z, e) =

l∏
i=1

P (zi|parents(Zi))

(pays attention to evidence in ancestors only)
 somewhere “in between” prior and posterior
distribution

Weight for a given sample z, e is

w(z, e) =

m∏
i=1

P (ei|parents(Ei))

Cloudy

RainSprinkler

 Wet
Grass

but performance still degrades
with many evidence variables
because a few samples have
nearly all the total weight

Weighted sampling probability is

SWS(z, e)w(z, e) =

l∏
i=1

P (zi|parents(Zi))

m∏
i=1

P (ei|parents(Ei)) = P (z, e)
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Conditional Independence
Inference in BNSummary

Approximate inference by LW:
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables
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Conditional Independence
Inference in BNOutline

1. Conditional Independence

2. Inference in BN
Exact inference by enumeration
Exact inference by variable elimination
Exact inference by message passing
Approximate inference by stochastic simulation
Approximate inference by Markov chain Monte Carlo
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Conditional Independence
Inference in BNApproximate inference using MCMC

“State” of network = current assignment to all variables.
Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-Ask(X,e,bn,N) returns an estimate of P (X |e)
local variables: N[X ], a vector of counts over X, initially zero

Z, nonevidence variables in bn, hidden + query
x, current state of the network, initially copied from e

initialize x with random values for the variables in Z
for j = 1 to N do

N[x ]←N[x ] + 1 where x is the value of X in x
for each Zi in Z do

sample the value of Zi in x from Pr(Zi |mb(Zi))
given the values of MB(Zi) in x

return Normalize(N[X ])

Can also choose a variable to sample at random each time
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Conditional Independence
Inference in BNThe Markov chain

With Sprinkler = true,WetGrass = true, there are four states:

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Cloudy

RainSprinkler

 Wet
Grass

Wander about for a while, average what you see

Probabilistic finite state machine
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Conditional Independence
Inference in BNMCMC example contd.

Estimate Pr(Rain|Sprinkler = true,WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain = true, 69 have Rain = false

P̂r(Rain|Sprinkler = true,WetGrass = true) = Normalize(〈31, 69〉) = 〈0.31, 0.69〉

Theorem
The Markov Chain approaches a stationary distribution:

long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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Conditional Independence
Inference in BNMarkov blanket sampling

Markov blanket of Cloudy is
Sprinkler and Rain

Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Cloudy

RainSprinkler

 Wet
Grass

Probability given the Markov blanket is calculated as follows:

P (x′i|mb(Xi)) = P (x′i|parents(Xi))
∏

Zj∈Children(Xi)

P (zj |parents(Zj))

Easily implemented in message-passing parallel systems
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

P (Xi|mb(Xi)) won’t change much (law of large numbers)
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Conditional Independence
Inference in BNLocal semantics and Markov Blanket

Local semantics: each node is
conditionally independent
of its nondescendants given its parents

Each node is conditionally
independent of all others given its
Markov blanket: parents + children +
children’s parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j
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Conditional Independence
Inference in BNMCMC analysis: Outline

I Transition probability q(x→ x′)

I Occupancy probability πt(x) at time t

I Equilibrium condition on πt defines stationary distribution π(x)
Note: stationary distribution depends on choice of q(x→ x′)

I Pairwise detailed balance on states guarantees equilibrium

I Gibbs sampling transition probability:
sample each variable given current values of all others

=⇒ detailed balance with the true posterior

I For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable’s Markov blanket
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Conditional Independence
Inference in BNStationary distribution

I πt(x) = probability in state x at time t
πt+1(x′) = probability in state x′ at time t+ 1

I πt+1 in terms of πt and q(x→ x′)

πt+1(x′) =

∑
xπt(x)q(x→ x′)

I Stationary distribution: πt = πt+1 = π

π(x′) =

∑
xπ(x)q(x→ x′) for all x′

I If π exists, it is unique (specific to q(x→ x′))

I In equilibrium, expected “outflow” = expected “inflow”
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Conditional Independence
Inference in BNDetailed balance

I “Outflow” = “inflow” for each pair of states:

π(x)q(x→ x′) = π(x′)q(x′ → x) for all x, x′

I Detailed balance =⇒ stationarity:∑
xπ(x)q(x→ x′) =

∑
xπ(x′)q(x′ → x)

= π(x′)

∑
xq(x

′ → x)

= π(x′)

I MCMC algorithms typically constructed by designing a transition
probability q that is in detailed balance with desired π
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Conditional Independence
Inference in BNGibbs sampling

I Sample each variable in turn, given all other variables

I Sampling Xi, let X̄i be all other nonevidence variables

I Current values are xi and x̄i; e is fixed

I Transition probability is given by

q(x→ x′) = q(xi, x̄i → x′i, x̄i) = P (x′i|x̄i, e)

I This gives detailed balance with true posterior P (x|e):
π(x)q(x→ x′) = P (x|e)P (x′i|x̄i, e) = P (xi, x̄i|e)P (x′i|x̄i, e)

= P (xi|x̄i, e)P (x̄i|e)P (x′i|x̄i, e) (chain rule)
= P (xi|x̄i, e)P (x′i, x̄i|e) (chain rule backwards)
= q(x′ → x)π(x′) = π(x′)q(x′ → x)
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Conditional Independence
Inference in BNGibbs sampling

I Sample each variable in turn, given all other variables

I Sampling Xi, let X̄i be all other nonevidence variables

I Current values are xi and x̄i; e is fixed

I Transition probability is given by

q(x→ x′) = q(xi, x̄i → x′i, x̄i) = P (x′i|x̄i, e)

I This gives detailed balance with true posterior P (x|e):
π(x)q(x→ x′) = P (x|e)P (x′i|x̄i, e) = P (xi, x̄i|e)P (x′i|x̄i, e)

= P (xi|x̄i, e)P (x̄i|e)P (x′i|x̄i, e) (chain rule)
= P (xi|x̄i, e)P (x′i, x̄i|e) (chain rule backwards)
= q(x′ → x)π(x′) = π(x′)q(x′ → x)

50



Conditional Independence
Inference in BNGibbs sampling

I Sample each variable in turn, given all other variables

I Sampling Xi, let X̄i be all other nonevidence variables

I Current values are xi and x̄i; e is fixed

I Transition probability is given by

q(x→ x′) = q(xi, x̄i → x′i, x̄i) = P (x′i|x̄i, e)

I This gives detailed balance with true posterior P (x|e):
π(x)q(x→ x′) = P (x|e)P (x′i|x̄i, e) = P (xi, x̄i|e)P (x′i|x̄i, e)

= P (xi|x̄i, e)P (x̄i|e)P (x′i|x̄i, e) (chain rule)
= P (xi|x̄i, e)P (x′i, x̄i|e) (chain rule backwards)
= q(x′ → x)π(x′) = π(x′)q(x′ → x)

50



Conditional Independence
Inference in BNSummary

Exact inference by variable elimination:
– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:

– PriorSampling and RejectionSampling unusable as evidence grow
– LW does poorly when there is lots of (late-in-the-order) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables

52


	Conditional Independence
	Inference in BN
	Exact inference by enumeration
	Exact inference by variable elimination
	Exact inference by message passing
	Approximate inference by stochastic simulation
	Approximate inference by Markov chain Monte Carlo


