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Overview

Support Vector Machines:

© N o o s~ e D=

Functional and Geometric Margins
Optimal Margin Classifier
Lagrange Duality

Karush Kuhn Tucker Conditions
Solving the Optimal Margin
Kernels

Soft margins

SMO Algorithm



Kernels
Soft margins

In This Lecture SMO Algorsthim

1. Kernels

2. Soft margins

3. SMO Algorithm



Kernels

Soft margins
Resu me SMO Algorithm
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Introduction

We saw:

1. h(6,7) fitted # on training data then discarded training data

2. k-NN training data kept during the prediction phase. Memory based
method. (fast to train, slower to predict)

3. locally weighted linear regression

272

= ; . ; F - -7
0= argminZwi(y” —0TF)?, w' =exp (—( ) )>
i

(linear parametric method where predictions are based on a linear
combination of kernel functions evaluated at training data)
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Soft margins

Outline SMO Algorithm

1. Kernels



Kernels
Soft margins

Kernels SMO Algorithm

T1,...,2Tp inputs
if we want all polynomial terms up to degree 2:

-, T
o(%) = [1% 3 ... 1% mwe mTy ... CCD,LTD}
(V) = O(D?) terms
For D=3 o L
S In SVM we need (¢(i%)7 - ¢(77)) =O(D?) for
2 .
times
\/§$1 711 ! . d d m
V2, A@)TP(2) = 1423 @wizi+ > aizl +2 ) miwjziz;
i=1 i=1 i=1
V213
22 . .
B(T) = 1 someone recognized that this is the same as
3 (14 27 - 2)* which can be computed in O(D).
Z3
V2z110 k(2.3 2T >\s
Z,2) =01+ -z kernel
o (Z,7) = ( )
V22213 | we may restrict to compute Kernel matrix
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Kernels SMO Algorithm

For models with fixed non linear feature space:
Definition (Kernel)

k(T 2) = 6(@)7T - ()

=) =

It follows that k(Z,2") = k(2, Z)

Kernel Trick

If we have an algorithm in which the input vector Z enters only in form of
scalar products, then we can replace the scalar product with some choice of
kernel.

» This is our case with SVM: thanks to dual formulation, both training
and prediction can be done via scalar product.

» No need to define features



Kernels
Soft margins

Constructing Kernels SMO Rigorihim

It must be k(7,7") = 27 - 7 (scalar product)
1. define some basis functions ¢(7):

D

K@, 7) = (@) 9) = Y 6i(@)u(@)

2. define kernel directly provided it is some scalar product in some feature
space (maybe infinite)

k(@ a)=(1+a7 - &)?
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Constructing Kernels SMO Rigorihim

Following approach 2:

Theorem (Mercer's Kernel)

Necessary and sufficient condition for I(-) to be a valid kernel is that the
Gram matrix k, whose elements are k(Z",77), is positive semidefinite
(Ve € R", #1k¥ > 0) for all choices of the set {i'}.

Proof: - - B B
Symmetry: kij = k‘(f’i‘v) = (f)(ﬂ?’)T(b(fJ) = ¢(fJ)TG5(f') = kj;

Kz = ZZZiKi]Zj
- ZZW (@) 3(a9)z,

Ezziz@c (D) 6u(29) 2,

P k
Zzzzifbk(zm)%(ﬁ(]))z}
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SMO Algorithm

Constructing Kernels

One easy way to construct kernels is by recombining building blocks.

Known building blocks:

Linear: k(z,7)=7T%

Polynomials: k(7 7") = (#7% + ¢)*

radial basis: k(#,7") = exp(— || # — 2" ||* /20?) (has infinite dimensionality)
sigmoid func.: k(%) = tanh(kiT @ — o)
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Outline

2. Soft margins

Kernels
Soft margins
SMO Algorithm
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Soft margins

What if data are not separable?

Kernels
Soft margins
SMO Algorithm

"B+ Bo=0 .
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SOft margins SMO Algorithm

We allow some points to be on the wrong side and introduce slack variables

-

&= (& ..., &) in the formulation:
geometric margin becomes:

> ' (0TF 4 6y) > 0 if predicted correct
> (677 + 6y) > —&; for the points mispredicted
In the formulation we modify
Yyt (0T F + 6y) > v into
Y (077 + 00) > v(1 — &) and include a regularization term to minimize:

1 . m
OPT):min — || 0> +C D &
(OPT) min 5 7] +C3

. il =i s ;

a;: 1-& <y (0" +0,) Vi=1,...,m
Wi & >1 Vi=1,...,1

still convex optimization
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£ 00,00 = 3 161+ & ) o [y (077 + 00) -

1=1 i=1

";1

Kernels
Soft margins
SMO Algorithm

1*52} Zuzéz

fixed &7, /i we have the primal £, (6, 6y, &) which we minimize in 0,6, ¢

m

Vilp =0= 0= Zaiyizi

i=1

oLp m )
=0=0= Oéi'll

00y ; y

Lagrange dual:

m m

m
Lp=) o~ ZZO‘ZO‘J%%x 7
i=1

lel
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m

max Lp = g al,, E E (yla]yzyﬂ Zj

=1 j=1
OS(LSC

m

> aiy' =0
=1

;i lyi (T Te +6o) —
pi& =0

yi (&7 0 + 0p) —
122 > 07

(1-&)]=0

(1-&)=0
& >0

for (5) + ‘)()%P = ( support vectors are:
> the points that lie on the edge of the margin (;
=0<a; <C
> the misclassified points &; > 0 that have a; = C'
The margin points can be used to solve (4) for 6,

Kernels
Soft margins
SMO Algorithm

= 0) and hence
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Outline

3. SMO Algorithm

Kernels
Soft margins

SMO Algorithm
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Coordinate ascent

max W(ar,az,...,0n)
(e}

repeat
for i=1,... m do

| ;= argmaxgs, W(ai,...,

until till convergence ;

QG 1O, iy 1y - - -

Kernels
Soft margins
SMO Algorithm

;)
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Sequential Minimal Optimization SMO Algorithm

max W(aq,ag,...,0m)
«

m

Z y'a; =0
i—1

Fix and change two as at a time.

repeat

select v; and «; by some heuristic;

hold all oy, I # i, j fixed and optimize W (&) in oy, o,
until till convergence ;

C—asy?

1 2 o m . A . o
ary! +agy? = = 3 auy' = const = = S
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Soft margins
SMO Algorithm

Kernels

Example

SVM - Radial Kernel in Feature Space

SVM - Degree-4 Polynomial in Feature Space

Training Error: 0.160

Test Error:

0.218

0.210

Bayes Error:

0.245

Test Error:

0.210

Bayes Error:
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SVM for K-Classes SO Altrithm

1. train K SVM each SVM classifies one class from all the others.

2. choose the indication of the SVM that makes the strongest prediction:
where the basis vector input point is furthest into positive region

21
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SVM fOI’ regreSSiOn SMO Algorithm

With a quantitative response we try to fit as much as possible within the
margin change, hence we change the objective function in (OPT3) into:

m
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|r| — e otherwise
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SVM as Regularized Function

Loss

o | .
7] —— Hinge Loss
~—— Binomial Deviance
w | —— Squared Error
o —— Class Huber
<
o
v
<
o 4
o
e |
o
T T T t T T T
-3 -2 -1 0 1 2 3
yf
Loss Function| Lly. f ()] Minimizing Function
Binomial Pr(Y = +1[2)
Deviance log[1 + e~¥/@®)] J@) =log 5 )
SVM Hinge [1-yf(@))+ f(z) = sign[Pr(Y = +1jz) — 1

Loss

Squared
Error

= f@) =1 -yf@)?

fla) = 2Pr(Y = +1fe) — 1

Kernels
Soft margins
SMO Algorithm
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