
FF505/FY505

Computational Science

Lecture 1
Introduction to Matlab

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Course Organization
Overview of MATLAB
Solving Linear SystemsOutline

1. Course Organization

2. Overview of MATLAB

3. Solving Linear Systems

2

Course Organization
Overview of MATLAB
Solving Linear SystemsOutline

1. Course Organization

2. Overview of MATLAB

3. Solving Linear Systems

3

Course Organization
Overview of MATLAB
Solving Linear SystemsOn the Course

Organization

1. Introduction to mathematical tools (Claudio) – weeks 5-8

2. Tutorial on numerical software, MATLAB (Marco) – weeks 5-8

3. Laboratories on applications in physics (Paolo) – weeks 7-11

Evaluation

Group project during the laboratory session + oral exam

4

Course Organization
Overview of MATLAB
Solving Linear SystemsMATLAB Section

The MATLAB Section will cover

MATLAB interactive environment

MATLAB vectorized operations

MATLAB programming

data input/output

simple visualization.

More specifically, it should prepare you to carry out the exercises from the
theory and laboratory sections.

5

Course Organization
Overview of MATLAB
Solving Linear SystemsMATLAB Section – Schedule

Schedule for weeks 5-8 (4 weeks):

Lecture, Thursday, 10:15-12:00, U140, (weeks 05-08)

Tutorials:

S1 (FF505/FY505), Thursday, 12-14 U10 (weeks 05-08)

S6 (FF505), Friday, 12-14, U14, (week 05)
S6 (FF505), Friday, 08-10, U14 (weeks 06-08)

S9 (FY505), Friday, 10-12, U49c (weeks 05-08)

From week 7 you’ll start also laboratories

6

Course Organization
Overview of MATLAB
Solving Linear Systems

Communication tools

BlackBoard (BB)
(link to MATLAB Section http://www.imada.sdu.dk/~marco/FF505)

Announcements in BlackBoard

Personal email of instructors and Marco

Ask peers

7

http://www.imada.sdu.dk/~marco/FF505

Course Organization
Overview of MATLAB
Solving Linear SystemsHands on Experience

Weekly exercises to be carried out in your study group outside of tutorial
sessions.

Slides and exercises sheets are posted after lecture at
http://www.imada.sdu.dk/~marco/FF505

Getting MATLAB

machines in IMADA terminal room and in U26B (12 PCs)
(type matlab from command line)

use a Matlab clone, eg, Octave

buy the student edition of Matlab: 89$ (ca. 500 DDK)
Link: http://www.mathworks.se/academia/student_version/
Then click on “BUY NOW”

8

http://www.imada.sdu.dk/~marco/FF505
http://www.mathworks.se/academia/student_version/

Course Organization
Overview of MATLAB
Solving Linear SystemsMATLAB

MATLAB (matrix laboratory) is a high-level language and interactive
environment to perform computationally intensive numerical computations
faster than with low-level programming languages such as C, C++, and
Fortran.

Developed by a privately held company, MathWorks, 70% located at the
company’s headquarters in Massachusetts.

Stable release: 2012b (we have 2008b)

Written in C, Java

License: Proprietary

9

Course Organization
Overview of MATLAB
Solving Linear SystemsScientific vs Symbolic Computing

scientific computing is based on numerical computation with
approximate floating point numbers.

symbolic computation manipulates mathematical expressions and other
mathematical objects.
emphasis on exact computation with expressions containing variables
that have not any given value and are thus manipulated as symbols

 Try http://www.wolframalpha.com

Symbolic computation can be done in MATLAB with the Symbolic Math
Toolbox and the MuPAD editor (not installed)

10

http://www.wolframalpha.com

Course Organization
Overview of MATLAB
Solving Linear Systems

Other similar numerical computing environments with high-level
programming language are:

Maple www.maplesoft.com (symbolic) – Proprietary

Mathematica http://www.wolfram.com/mathematica (discrete
mathematics) – [Proprietary]

Octave www.gnu.org/software/octave – [General Public License]

R www.r-project.org (statistics) – [GPL]

Sage www.sagemath.org (discrete mathematics) – [GPL]

SciPy www.scipy.org (based on python) – [GPL]

...

11

www.maplesoft.com
http://www.wolfram.com/mathematica
www.gnu.org/software/octave
www.r-project.org
www.sagemath.org
www.scipy.org

Course Organization
Overview of MATLAB
Solving Linear SystemsOutline

1. Course Organization

2. Overview of MATLAB

3. Solving Linear Systems

12

Course Organization
Overview of MATLAB
Solving Linear SystemsMATLAB Desktop

Command window

Workspace

Command history

Current folder browser

Variable editor

MATLAB program editor

Help

Desktop menu

Command line programming� �
%%% elementary operations
5+6
3-2
5*8
1/2
2^6
1 == 2 % false
1 ~= 2 % true. note, not "!="
1 && 0
1 || 0
xor(1,0)� �

Docking/Undocking, maximize by double click

Current folder

Search path (File menu -> set path)

13

Course Organization
Overview of MATLAB
Solving Linear SystemsVariable Assignment

The = sign in MATLAB represents the assignment or replacement operator.
It has a different meaning than in mathematics.

Compare:
x = x + 3 In math it implies 0=2, which is an invalid statement

In MATLAB it adds 2 to the current value of the variable� �
%% variable assignment
a = 3; % semicolon suppresses output
b = ’hi’;
c = 3>=1;

% Displaying them:
a = pi
disp(sprintf(’2 decimals: %0.2f’, a))
disp(sprintf(’6 decimals: %0.6f’, a))
format long % 16 decimal digits
a
format short e % 4 decimal digits +

scientific notation
a� �

� �
x + 2 = 20 % wrong statement
x = 5 + y % wrong if y unassigned� �
Variables are visible in the workspace

Names:
[a-z][A-Z][0-9]_

case sensitive
max 63 chars

14

Course Organization
Overview of MATLAB
Solving Linear SystemsManaging the Work Session

� �
who % lists variables currently in memory
whos % lists current variables and sizes
clear v % clear w/ no argt clears all
edit filename % edit a script file
clc % clears theCommand window
... % ellipsis; continues a line
help rand % returns help of a function
quit % stops MATLAB� �

Predefined variables� �
pi
Inf % 5/0
NaN % 0/0
eps % accuracy of computations
i,j % immaginary unit i=j=sqrt(−1)
3+8i % a complex number (no ∗)
Complex(1,-2)� �

15

Course Organization
Overview of MATLAB
Solving Linear SystemsWorking with Files

MATLAB handles three types of files:

M-files .m: Function and program files

MAT-files .mat: binary files with name and values of variables

data file .dat: ASCII files

� �
%% loading data
load q1y.dat
load q1x.dat
save hello v; % save variable v into file

hello.mat
save hello.txt v -ascii; % save as ascii
% fopen, fprintf, fscanf also work
% ls %% cd, pwd & other unix commands

work in matlab;
% to access shell, preface with "!"� �
Files are stored and search in current directory and search path

16

Course Organization
Overview of MATLAB
Solving Linear SystemsDirectories and paths

If we type problem1

1. seeks if it is a variable and displays its value

2. checks if it is one of its own programs and executes it

3. looks in the current directory for file program1.m and executes the file

4. looks in the search path for file program1.m and executes it� �
addpath dirname % adds the directory dirname to the search path
cd dirname % changes the current directory to dirname
dir % lists all files in the current directory
dir dirname % lists all files in dirname
path % displays the MATLAB search path
pathtool % starts the Set Path tool
pwd % displays the current directory
rmpath dirname % removes the directory dirname from the search path
what % lists MATLAB specific files in the current directory
what dirname % lists MATLAB specific files in dirname
which item % displays the path name of item� �

17

Course Organization
Overview of MATLAB
Solving Linear SystemsArrays and Matrices

Arrays are the basic data structures of MATLAB
Types of arrays:
numeric • character • logical • cell • structure • function handle� �
%% vectors and matrices
A = [1 2; 3 4; 5 6]

v = [1 2 3]
v = [1; 2; 3]
v = [1:0.1:2] % from 1 to 2, with stepsize of 0.1. Useful for plot axes
v = 1:6 % from 1 to 6, assumes stepsize of 1

C = 2*ones(2,3) % same as C = [2 2 2; 2 2 2]
w = ones(1,3) % 1x3 vector of ones
w = zeros(1,3)
w = rand(1,3) % drawn from a uniform distribution
w = randn(1,3) % drawn from a normal distribution (mean=0, var=1)
w = -6 + sqrt(10)*(randn(1,10000)) % (mean = 1, var = 2)
hist(w) % histogram
e = []; % empty vector
I = eye(4) % 4x4 identity matrix
A = linspace(5,8,31) % equivalent to 5:0.1:8� �

18

Course Organization
Overview of MATLAB
Solving Linear Systems

� �
%% indexing
A(3,2) % indexing is (row,col)
A(2,:) % get the 2nd row. %% ":" means every elt along that dimension
A(:,2) % get the 2nd col
A(1,end) % 1st row, last elt. Indexing starts from 1.
A(end,:) % last row

A([1 3],:) = [] % deletes 1st and 3rd rows
A(:,2) = [10 11 12]’ % change second column
A = [A, [100; 101; 102]]; % append column vec
% A = [ones(size(A,1),1), A]; % e.g bias term in linear regression
A(:) % Select all elements as a column vector.� �� �
%% dimensions
sz = size(A)
size(A,1) % number of rows
size(A,2) % number of cols
length(v) % size of longest dimension� �

19

Course Organization
Overview of MATLAB
Solving Linear SystemsMatrix Operations

� �
%% matrix operations
A * C % matrix multiplication
B = [5 6; 7 8; 9 10] % same dims as A
A .* B % element−wise multiplcation
% A .∗ C or A ∗ B gives error − wrong dimensions
A .^ 2
1./v
log(v) % functions like this operate element−wise on vecs or matrices
exp(v) % e^4
abs(v)

-v % −1∗v

v + ones(1,length(v))
% v + 1 % same

A’ % (conjuate) transpose� �

20

Course Organization
Overview of MATLAB
Solving Linear SystemsPlots

� �
%% plotting
t = [0:0.01:0.98];
y1 = sin(2*pi*4*t);
plot(t,y1);
y2 = cos(2*pi*4*t);
hold on; % "hold off" to turn off
plot(t,y2,’r--’);
xlabel(’time’);
ylabel(’value’);
legend(’sin’,’cos’);
title(’my plot’);
close; % or, "close all" to close all figs

figure(2), clf; % can specify the figure number
subplot(1,2,1); % Divide plot into 1x2 grid, access 1st element
plot(t,y1);
subplot(1,2,2); % Divide plot into 1x2 grid, access 2nd element
plot(t,y2);
axis([0.5 1 -1 1]); % change axis scale� �

21

Course Organization
Overview of MATLAB
Solving Linear SystemsControl Flow

if� �
if w(1)==0

% <statement>
elseif w(1)==1

% <statement>
else

% <statement>
end� �
switch� �
method = ’Bilinear’;
switch lower(method)

case {’linear’,’bilinear’}
disp(’Method is linear’)

case ’cubic’
disp(’Method is cubic’)

case ’nearest’
disp(’Method is nearest’)

otherwise
disp(’Unknown method.’)

end� �

for� �
w = [];
z = 0;
is = 1:10
for i=is

w = [w, 2*i] % Same as \/
% w(i) = 2∗i
% w(end+1) = 2∗i

z = z + i;
% break;
% continue;

end
% avoid! same as w = 2∗[1:10], z = sum([1:10]);� �
while� �
w = [];
while length(w) < 3

w = [w, 4];
% break

end� �
22

Course Organization
Overview of MATLAB
Solving Linear SystemsVectorization

One way to make your MATLAB programs run faster is to vectorize the
algorithms. A simple example involves creating a table of logarithms:� �
x = .01;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end� �
A vectorized version of the same code is� �
x = .01:.01:10;
y = log10(x);� �
Some functions are vectorized, hence with vectors must use
element-by-element operators to combine them.
Eg: z = ey sinx, x and y vectors:� �
z=exp(y).*sin(x)� �

23

Course Organization
Overview of MATLAB
Solving Linear SystemsScript and Function Files

� �
x=(1:1000)’;
for k=1:5
y(:,k)=k*log(x);
end
plot(x,y)� �
command line simple

� �
function y=simpl(maxLoop)

% (smart indent)
x=(1:1000)’;
for k=1:maxLoop
y(:,k)=k*log(x);
end
plot(x,y)� �

command line g=simple(10)

Same name conventions for .m files as for variables.� �
exist("example1")
exist("example1.m","file")
exist("example1","builtin")� �
Debugging:
Two types of errors: (i) syntax errors (ii) runtime errors

test on small examples whose result can be verified by hand
display intermediate calculations
use the debugger (not needed in this course)

24

Course Organization
Overview of MATLAB
Solving Linear SystemsRapid Code Iteration

Rapid code iterations using cells in the editor

cells are small sections of code performing specific tasks

they are separated by double %

they can be executed independently, eg, CTRL+Enter and their
parameters adjusted

navigate by CTRL+SHIFT+Enter or by jumping

publish in HTML or Word.

25

Course Organization
Overview of MATLAB
Solving Linear SystemsOutline

1. Course Organization

2. Overview of MATLAB

3. Solving Linear Systems

27

Course Organization
Overview of MATLAB
Solving Linear SystemsSystems of Linear Equations

6x− 10y = 2

3x− 4y = 5

has one single solution

� �
% plot functions in implicit form
ezplot(’6*x-10*y=2’,[0 10 0 10]),
hold,
ezplot(’3*x-4*y=5’,[0 10 0 10])� �

3x− 4y = 5

6x− 8y = 10

has infinite solutions

� �
ezplot(’3*x-4*y=5’,[0 10 0 10]),
hold,
ezplot(’6*x-8*y=10’,[0 10 0 10])� �

3x− 4y = 5

6x− 8y = 3

has no solution

� �
ezplot(’3*x-4*y=5’,[0 10 0 10]),
hold,
ezplot(’6*x-8*y=3’,[0 10 0 10])� �

28

Course Organization
Overview of MATLAB
Solving Linear SystemsMatrix Form

The linear system:

2x1+ 9x2 = 5

3x1− 4x2 = 7

can be expressed in vector-matrix form as:[
2 9
3 −4

] [
x1

x2

]
=

[
5
7

]
In general, a set of m equations in n unknowns can be expressed in the form
Ax = b, where A is m× n, x is n× 1 and b is m× 1.

The inverse of A is A−1 and has property that

A−1A = AA−1 = I

Hence the solution to our system is:

x = A−1b

29

Course Organization
Overview of MATLAB
Solving Linear Systems

A matrix is singular if det(A) = |A| = 0

Inverse of a square matrix A is defined only if A is nonsingular.

If A is singular, the system has no solution� �
>> A=[3 -4; 6 -8];
>> det(A)
ans =

0
>> inv(A)
Warning: Matrix is singular to working precision.
ans =

Inf Inf
Inf Inf� �

30

Course Organization
Overview of MATLAB
Solving Linear Systems

Calculating the inverse

A−1 =
1

|A|
adj(A)

adj(A) is the adjugate matrix of A:

1. Calculate the (i, j) minor of A, denoted Mij , as the determinant of the
(n− 1)× (n− 1) matrix that results from deleting row i and column j
of A.

2. Calculate the cofactor matrix of A, as the n× n matrix C whose (i, j)
entry is the (i, j) cofactor of A

Cij = (−1)i+jMij

3. set adj(A)ij = Cji

31

Course Organization
Overview of MATLAB
Solving Linear Systems

For a 2× 2 matrix

A =

[
a b
c d

] the matrix inverse is

A−1 =
1

|A|

[
d −c
−b a

]T
=

1

ad− bc

[
d −b
−c a

]
For a 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


the matrix inverse is

A−1 =
1

|A|



+

∣∣∣∣a22 a23
a32 a33

∣∣∣∣ − ∣∣∣∣a21 a23
a31 a33

∣∣∣∣ +

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
−
∣∣∣∣a12 a13
a32 a33

∣∣∣∣ +

∣∣∣∣a11 a13
a31 a33

∣∣∣∣ − ∣∣∣∣a11 a12
a31 a32

∣∣∣∣
+

∣∣∣∣a12 a13
a22 a23

∣∣∣∣ − ∣∣∣∣a11 a13
a21 a23

∣∣∣∣ +

∣∣∣∣a11 a12
a21 a22

∣∣∣∣



T

32

Course Organization
Overview of MATLAB
Solving Linear SystemsLeft Division Method

x = A−1b rarely applied in practice because calculation is likely to
introduce numerical inaccuracy

The inverse is calculated by LU decomposition, the matrix form of
Gaussian elimination.� �
% left division method
x = A\b� �
A = LU
PA = LU

33

Course Organization
Overview of MATLAB
Solving Linear Systems

for a matrix A, n× n, det(A) 6= 0⇔ rank of A is n
for a system Ax = b with m equations and n unknowns a solution exists
iff rank(A) = rank([Ab]) = r

if r = n unique
if r < n infinite sol.

for a homogeneous system Ax = 0 it is always rank(A) = rank([Ab])
and there is a nonzero solution iff rank(A) < n

• A\b works for square and nonsquare matrices. If nonsquare (m < n) then the
system is undetermined (infinite solutions). A\b returns one variable to zero
• A\b does not work when det(A) = 0.� �
>> A=[2, -4,5;-4,-2,3;2,6,-8];
>> b=[-4;4;0];
>> rank(A)
ans =

2
>> rank([A,b])
ans =

2
>> x=A\b
Warning: Matrix is singular to working

precision.
x =

NaN
NaN
NaN� �

However since

rank(A) = rank([Ab])

an infinite number of solutions exist
(undetermined system).
x=pinv(A)b solves with pseudoinverse
and rref([A,b]) finds the reduced row
echelon form

34

Course Organization
Overview of MATLAB
Solving Linear Systems

Overdetermined Systems

An overdetermined system is a set of equations that has more independent
equations than unknowns.

For such a system the matrix inverse method will not work because the A
matrix is not square.

However, some overdetermined systems have exact solutions, and they can be
obtained with the left division method x = A \ b

For other overdetermined systems, no exact solution exists. We need to check
the ranks of A and [Ab] to know whether the answer is the exact solution. If
a solution should not exist the left-division answer is a least squares solution.

35

Course Organization
Overview of MATLAB
Solving Linear SystemsFlowchart for Linear System Solver

36

Course Organization
Overview of MATLAB
Solving Linear SystemsResume

Overview to MATLAB programming, environment and arrays

Solving linear systems in MATLAB

Work at the posted exercises in small groups

37

	Course Organization
	Overview of MATLAB
	Solving Linear Systems

