Chapter 18. Learning from Examples

0.5 1 0.5

e e T R o LI e
864202468 6 4 -2 0 2 46

(a) {b) (©)

Figure 18.17 (a) The hard threshold function Threshold{z) with 0/1 output. Note
that the function is nondifferentiable at z=0. (b) The logistic function, Logistie(z} =
H%;, also known as the sigmoid function. (¢) Plot of a logistic regression hypothesis

hw(x) = Logistie{w - x) for the data shown in Figure 18.15(b).

has more convenient mathematical properties. The function is shown in Figure 18.17(b).
With the logistic function replacing the threshold function, we now have

_ 1
Tl 4ewx’

An example of such a hypothesis for the two-input earthquake/explosion problem is shown in
Figure 18.17(c). Notice that the output, being a number between 0 and 1, can be interpreted
as a probability of belonging to the class labeled 1. The hypothesis forms a soft boundary
in the input space and gives a probability of 0.5 for any input at the center of the boundary
region, and approabhes 0 or 1 as we move away from the boundary.

The process of fitting the weights of this model to minimize loss on a data set is called
logistic regression. There is no easy closed-form solution to find the optimal value of w with
this model, but the gradient descent computation is straightforward. Because our hypotheses
no longer output just O or 1, we will use the Lo loss function; also, to keep the formulas
readable, we’ll use g to stand for the logistic function, with ¢’ its derivative.

For a single example (X,y), the derivation of the gradient is the same as for lincar
regression (Equation (18.5)) up to the point where the actual form of % is inserted. (For this
derivation, we will need the chain rule: 8g(f(z))/0z = ¢ (f(z)) Of(x)/Oz.) We have

hw(x) = Logistic(w - X}

832- Loss(w) = 5‘?@ (y — hu(x))?
= 2y (X)) X oy~ T ()
= 20y~ (X)) X /(X)X 7w x

= —2(y — hw(X)) X ¢'(w-x) x z; .

Section 18.7. Artificial Neural Networks 727
o 1 + o g 1 o |
= eyl A0 Lk kLA LLE M) & E N
g 0.9 £ s g oy FIHT
208 g 0.8 & 0.8
g I g
\g 0.7 5 07 5 0.7
B
g 0.6 ,Ig 0.6 _é 0.6
T
d 05 0.5 0.5
= g £
@ 04 3 . : — . ® 04 4 2 B 04 4)
0 1000 2000 3000 4000 5000 0 20000 40000 60000 80000 10C000 0 20000 40000 60000 80000 100000

Number of weighl updates Number of weight updates Number of weight updates

(a) (b) : (c)

Figure 18.18 Repeat of the experiments in Figure 18.16 using logistic regression and
squared error. The plot in (a) covers 5000 iterations rather than 1000, while (b) and (c) use
the same scale,

The derivative ¢’ of the logistic function satisfies ¢’'(z) = g(2)(1 — g(z)), so we have
§ W x) = g X)(1 = 9w X)) = hy (R)(1 = Py ()
so the weight update for minimizing the loss is
wi Wity — hw(x)) X hy () (1~ o (X)) X 7 - (18.8)

Repeating the experiments of Figure 18.16 with logistic regression instead of the linear
threshold classifier, we obtain the results shown in Figure 18.18. In (a), the linearly sep-
arable case, logistic regression is somewhat slower to converge, but behaves much more
predictably. In (b) and (c), where the data are noisy and nonseparable, logistic regression
converges far more quickly and reliably. These advantages tend to carry over into real-world
applications and logistic regression has become one of the most popular classification tech-
niques for problems in medicine, marketing and survey analysis, credit scoring, public health,
and other applications.

18.7 ARTIFICIAL NEURAL NETWORKS

NEURAL NETWORK

We turn now to what seems to be a somewhat unrelated topic: the brain. In fact, as we
will see, the technical ideas we have discussed so far in this chapter turn out to be useful in
building mathematical models of the brain’s activity; conversely, thinking about the brain has
helped in extending the scope of the technical ideas.

Chapter 1 touched briefly on the basic findings of neuroscience—in particular, the hy-
pothesis that mental activity consists primarily of electrochemical activity in networks of
brain cells called neurons. (Figure 1.2 on page 11 showed a schematic diagram of a typical
neuron.) Inspired by this hypothesis, some of the earliest AT work aimed to create artificial
neural networks. (Other names for the field include conmectionisim, parallel distributed
processing, and neural computation.) Figure 18.19 shows a simple mathematical model
of the neuron devised by McCulloch and Pitts (1943). Roughly speaking, it “fires” when a
linear combination of its inputs exceeds some (hard or soft) threshold-—that is, it implements

.Chapter 18. Learning from Examples

1 Bias Weight .
dg= woy ;= g(mj

.
S

Input Input Activation . Output
Ligks Function Function OUtPut Links

Figure 18,19 A simple mathematical mode] for a neuron. The unit's output activation is
a; = g(3°"_ , w; ;a;), where a; is the output activation of unit ¢ and w;,; is the weight on the
link from unit ¢ to this unit.

a linear classifier of the kind described in the preceding section. A neural network is just a
collection of units connected together; the properties of the network are determined by its

topology and the properties of the “neurons.”
Since 1943, much more detailed and realistic models have been developed, both for

neurons and for larger systems in the brain, leading to the modern field of computational
neuroscience. On the other hand, researchers in Al and statistics became interested in the
more abstract properties of neural networks, such as their ability to perform distributed com-
putation, to tolerate noisy inputs, and to learn. Although we understand now that other kinds
of systems—including Bayesian networks—have these properties, neural networks remain
one of the most popular and effective forms of learning system and are worthy of study in

their own right.

18.7.1 Neural network structures

Neural networks are composed of nodes or umits (see Figure 18.19) connected by directed
links. A link from unit 4 to unit 7 serves {o propagaté the activation g; from i to 7.® Each link
also has a numeric Weight w; ; associated with it, which determines the strength and sign of
the connection. Just as in linear regression models, each unit has a dammy input ap =1 with
an associated weight wg ;. Each unit j first computes a weighted sum of its inputs:

7
Mg = E Wi, -
i=0

Then it applies an activation function g to this sum to derive the output:

aj = glin;) =g | > wijai| - (18.9)
i=10

% A note on notation: for this section, we are forced to suspend our usual conventions. Input attributes are still
indexed by 7 , so that an “external” activation a; is given by input z;; but index j will refer to ?nternal units
rather than examples. Throughout this section, the mathematical derivations concern a single generic example X,
omitting the usnal summations over examples to obtain results for the whole data set.

Section 18.7.

Artificial Neural Networks 729

PERCEPTROM

SIGMoID
PERCEPTRON

FEED-FORWARD
NETWORKK

RECURRENT
NETWORK

LAYERS

HIDDEN UNIT

PERCEPTRON
NETWORK

The activation function g is typically either a hard threshold (Figure 18.17(a)), in which case
the unit is called a perceptron, or a logistic function (Figure 18.17(b)), in which case the term
sigmoid perceptron is sometimes used. Both of these nonlinear activation function ensure
the important property that the entire network of units can represent a nonlinear function (see
Exercise 18.26). As mentioned in the discussion of logistic iégression (pags 725); thé logistic
activation function has the added advantage of being differentiable.

Having decided on the mathematical model for individual “neurons,” the next task is
to connect them together to form a network. There are two fundamentally distinct ways to
do this. A feed-forward network has connections only in one direction——that is, it forms a
directed acyclic graph. Every node receives input from “upstream” nodes and delivers output
to “downstream’ nodes; there are no loops. A feed-forward network represents a function of
its current input; thus, it has no internal state other than the weights themselves. A recurrent
network, on the other hand, feeds its outputs back into its own inputs. This means that
the activation levels of the network form a dynamical system that may reach a stable state or
exhibit oscillations or even chaotic behavior. Moreover, the response of the network to a given
input depends on its initial state, which may depend on previous inputs. Hence, recurrent
networks (unlike feed-forward networks) can support short-term memory. This makes them
more interesting as models of the brain, but also more difficult to understand. This section
will concentrate on feed-forward networks; some pointers for further reading on recurrent
networks are given at the end of the chapter.

Feed-forward networks are usually arranged in layers, such that cach unit receives input
only from units in the immediately preceding layer. In the next two subsections, we will look
at single-layer networks, in which every unit connects directly from the network’s inputs to
its outputs, and multilayer networks, which have one or more layers of hidden units that are
not connected to the outputs of the network. So far in this chapter, we have considered only
learning problems with a single output variable y, but neural networks are often used in cases
where multiple outputs are appropriate. For example, if we want to train a network to add
two input bits, each a 0 or a 1, we will need one output for the sum bit and one for the carry
.bit. Also, when the learning problem involves classification into more than two classes—for
ﬁexample, when learning to categorize images of handwritten digits—it is common o use one

/ output unit for each class.

18.7.2 Single-layer feed-forward neural networks (perceptrons)

A network with all the inputs connected directly to the outputs is called a single-layer neural
network, or a perceptron network. Figure 18.20 shows a simple two-input, two-output
perceptron network. With such a network, we might hope to learn the two-bit adder function,
for example. Here are all the training data we will need:

Ty x3 ys (carry) | g4 (sum)
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Chapter 18. Learning from Examples

The first thing to notice is that a perceptron network with 7 outputs is really m separate
networks, because each weight affects only one of the outputs. Thus, there will be m sepa-
~ rate training processes. Furthermore, depending on the type of activation function used, the
' training processes will be either the perceptron learning rule (Equation (18.7) on page 724)
or gradient descent rule for the logistic regression (Equation (18.8) on page 727).

If you try either method on the two-bit-adder data, something interesting happens. Unit
3 learns the carry function easily, but unit 4 completely fails to learn the sum function. No,
unit 4 is not defective! The problem is with the sum function itself. We saw in Section 18.6
that linear classifiers (whether hard or soft) can represent linear decision boundaries in the in-
put space. This works fine for the carry function, which is alogical AND (see Figure 18.21(a)).
The sum function, however, 1s an XOR (exclusive OR) of the two inputs. As Figure 18.21(c)
illustrates, this function is not linearly separable so the perceptron cannot learn it.

The lincarly separable functions constitute just a small fraction of all Boolean func-
tions; Exercise 18.23 asks you to quantify this fraction. The inability of perceptrons to learn
even such simple functions as XOR was a significant setback to the nascent neural network

Section 18.7.

Artificial Neural Networks ' 731

D IE
Waa

(a) (b)

Figure 18.20 (a) A perceptron network with two inputs and two output units. (b) A neural
network with two inputs, one hidden Iayer of two units, and one ontput unit. Not shown are
the dummy inputs and their associated weights.

X1 X1
1 @ 1 O
?
0 0
0 1 * 0 1 X
(a) x; and x, (b) x o|; Xy (c) xq Xor Xy

Figure 18.21 Linear separability in threshold perceptrons. Black dots indicate a peint in
the input space where the value of the function is 1, and white dots indicate a point where the
value is 0. The perceptron returns 1 on the region on the non-shaded side of the line. In (c},

no such line exists that correctly ¢lassifies the inputs,

1

—_

X,
_xﬁ.x—-x-ae'x X‘X

- S
3
X *

x

s

X

0.9

©
o

X

I

4
. Hegn, S
e

0.8

o
oo

0.7 1

=
B

0.6 1 Perceptron —+—--

Decision tree -—~-%---

o]
=2
Ex

Proportion correct on fest set
Proportion correct on test set

0.5 1 0.5 Perceptron —+——
Decision tree ---%-—
04 ————————————, (i ey
0 10 20 30 40 50 60 70 80 90 100 0 100 20 30 40 50 60 70 80 90 100
Training set size Training set size
(a) (b)

Figure 18.22 Comparing the performance of perceptrons and decision trees, (a) Percep-
trons are better at learning the majority function of 11 inputs. (b) Decision trees are better at
learning the WillWaét predicate in the restaurant example.

community in the 1960s. Perceptrons are far from useless, however. Section 18.6.4 noted
that logistic regression (i.e., training a sigmoid perceptron) is even today a very popular and
effective tool. Moreover, a perceptron can represent some quite “complex” Boolean func-
tions very compactly. For example, the majority function, which outputs a 1 only if more
than half of its n inputs are 1, can be represented by a perceptron with each w; =1 and with
wy = —n/2. A decision tree would need exponentially many nodes to represent this function.

Figure 18.22 shows the learning curve for a perceptron on two different problems. On
the left, we show the curve for learning the majority function with 11 Boolean inputs (i.e.,
the function outputs a 1 if 6 or more inputs are 1). As we would expect, the perceptron learns
the function quite quickly, because the majority function is linearly separable. On the other
hand, the decision-tree learner makes no progress, because the majority function is very hard
(although not impossible) to represent as a decision tree. On the right, we have the restaurant
example. The solution problem is easily represented as a decision tree, but is not linearly
separable. The best plane through the data correctly classifies only 65%.

18.7.3 Multilayer feed-forward neural networks

(McCulloch and Pitts, 1943) were well aware that a single threshold unit would not solve all
their problems. In fact, their paper proves that such a unit can represent the basic Boolean
functions AND, OR, and NOT and then goes on to argue that any desired functionality can be
obtained by connecting large numbers of units into (possibly recurrent) networks of arbitrary
depth. The problem was that nobody knew how to train such networks,

This turns out to be an easy problem if we think of a network the right way: as a
function hyw({x) parameterized by the weights w. Consider the simple network shown in Fig-
ure 18.20(b), which has two input units, two hidden units, and two output unit. (In addition,
each unit has a duammy input fixed at 1.) Given an input vector x = (1, z2), the activations

Chapter 18. Learnjng from Examples

Foglxs %)
1
0.8

s 33)

W,
Wil
i,
ottt
eyt

0.8 b
: i
i

0 .
0.6 i 1 0.6
S i iy 0.4
0.4 ’n‘,.,?i.yj:-'l',l,'f’f.'f '
g th
02 il 0.2
g 0
¢
~ .4 - 2
X, 2 g *
(a) (®)

Figure 18.23 (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.

of the input units are set to (a1, a2) = (1, 22). The output at unit 5 is given by

ag = g(wops+wss a3 + Was Ga)
— glwo s+ wss glwos + w13 a1 +wa3 az) + was glwoed + Wig a1 + woa as))
= glwos +wss g(Wos + w131 + wa3 Ta) + was g(wod + Wia T+ W2l z3))-

Thus, we have the output expressed as a function of the inputs and the weights. A similar
expression holds for unit 6. As long as we can calculate the derivatives of such expressions
with respect to the weights, we can use the gradient-descent foss-minimization method to
train the network. Section 18.7.4 shows exactly how to do this. And because the function
represented by a network can be highly nonlinear—composed, as itis, of nested nonlinea-r soft
threshold functions—we can see neural networks as a tool for doing nonlinear regression,

Before delving into learning rules, let us look at the ways in which networks generate
complicated functions. First, remember that each unit in a sigmoid network represents a soft
* threshold in its input space, as shown in Figure 18.17(c) (page 726), With one hidden layer
and one output layer, as in Figure 18.20(b), each output unit computes a soft-thresholded
linear combination of several such functions. For example, by adding two opposite-facing
soft threshold functions and thresholding the result, we can obtain a “ridge” function as shown
in Figure 18.23(a). Combining two such ridges at right angles to each other (i.e., combining
the outputs from four hidden units), we obtain a “pump” as shown in Figure 18.23(b).

With more hidden units, we can produce more bumps of different sizes in more places.
In fact, with a single, sufficiently large hidden layer, it is possible to represent any continuous
function of the inputs with arbitrary accuracy; with two layers, even discontinuous fanctions
can be represented.” Unfortunately, for any particular network structure, it is harder to char-
acterize exactly which functions can be represented and which ones cannot.

9 The proof is complex, but the main point is that the required number of hiddeén units grows F:xponenti.ally with
the number of inputs. For example, 2" /n hidden units are needed to encode all Boolean functions of n inputs.

Section 18.7.

Artificial Neural Networks 733

BACK-PROPAGATICN

18.7.4 Learning in multilayer networks

First, let us dispense with one minor complication arising in multilayer networks: interactions
among the learning problems when the network has multiple outputs. In such cases, we
should think of the network as implementing a vector function hy, rather than a scalar function
hw; for example, the network in Figure 18.20(b) returns a vector [ax, ag]. Similarly, the
target output will be a vector y. Whereas a perceptron network decomposes into m separate
learning problems for an m-output problem, this decomposition fails in a multilayer network.
For example, both a5 and ag in Figure 18.20(b) depend on all of the input-layer weights, so
updates to those weights will depend on errors in both a5 and ag. Fortunately, this dependency
is very simple in the case of any loss function that is additive across the components of the
error vector ¥ — hy(x). For the Ly loss, we have, for any weight w,

15] 5} ad a
3—1011033(“’) = 5,—w|y —hy(x}* = o ;(?ﬂc —ap)? = Zk: 5{5(% —a,)? (18.10)

where the index % ranges over nodes in the output layer. Each term in the final summation
is just the gradient of the loss for the kth output, computed as if the other outputs did not
exist. Hence, we can decompose an tm-output learning problem into m: learning problems,
provided we remember to add up the gradient contributions from each of them when updating
the weights.

The major complication comes from the addition of hidden layers to the network.
Whereas the error y — hy, at the output layer is clear, the error at the hidden layers seems
mysterious because the training data do not say what value the hidden nodes should have.
Fortunately, it turns out that we can back-propagate the error from the output layer to the
hidden layers. The back-propagation process emerges directly from a derivation of the overall
error gradient. First, we will describe the process with an intuitive justification; then, we will
show the derivation.

At the output layer, the weight-update rule is identical to Equation (18.8). We have
multiple output units, so let Erry, be the kth component of the error vector y — hy,. We will
also find it convenient to define a modified error Ay = Erry, x ¢'(ing), so that the weight-
update rule becomes

Wy k < Wik + X X @y X JAVYS (18.11)

To update the connections between the input units and the hidden units, we need to define a
quantity analogous to the error term for output nodes. Here is where we do the error back-

- propagation. The idea is that hidden node 7 is “responsible” for some fraction of the error Ay,

in each of the output nodes to which it connects. Thus, the Ay, values are divided according
to the strength of the connection between the hidden node and the output node and are prop-
agated back to provide the A; values for the hidden layer. The propagation rule for the A
values is the following:

Aj = g'(ing) Y wiply . (18.12)
k

Chapter 18. Learning from Examples

function BACK-PROP-LEARNING(ezamples, network) returns a neural network
inputs: ezamples, a set of examples, each with input vector x and output vector y
network, a multilayer network with L layers, weights w; ;, activation function g
local variables: A, a vector of errors, indexed by network node

repeat
for each weight w; ; in network do
w;,; < a small random number
for each example (x,y) in examples do
/ + Propagate the inputs forward to compute the outputs « /
for each node 7 in the input layer do
G+ I
for {=2to Ldo
for each node j in layer £ do
’.':nj (—zi Wy,
a; +— g{in;)
/ + Propagate deltas backward from output layer to input layer % /
for each node ; in the output layer do
Aljleg'(ing) x (y; — ag)
for{=L—1toldo
for each node ¢ in layer £ do
Ali] — g/ (ing) Yo, wiz Alj
/[Update every weight in network using deltas » /
for each weight w; ; in network de
Wi Wi + o X ap X AL]]
until some stopping criterion is satisfied
return network

Figure 18.24 The back-propagation algorithm for learning in multilayer networks.

Now the weight-update rule for the weights between the inputs and the hidden layer is essen-
tially identical to the update rule for the output layer:

wi,j<—w7;,j+oz><aixAj .
The back-propagation process can be summarized as follows:

e Compute the A values for the output units, using the observed error.
e Starting with output layer, repeat the following for each layer in the network, until the
earliest hidden layer is reached:
— Propagate the A values back to the previous layer.
- Update the weights between the two layers.

The detailed algorithm is shown in Figure 18.24. . _
For the mathematically inclined, we will now derive the back-propagation equations
from first principles. The derivation is quite similar to the gradient calculation for logistic

Section 18.7.

Artificial Neural Networks 735

regression (leading up to Equation (18.8) on page 727), except that we have to use the chain
rule more than once.

Following Equation (18.10), we compute just the gradient for Loss; — (yx — ax)® at
the kth output. The gradient of this loss with respect to weights connecting the hidden layer
to the output layer will be zero except for weights w, 5, that connect to the kth output unit.
For those weights, we have

JLossy,

8wj,k

da.
= —2(yx — ak)aw kk = —2(yx — ag)—F—
J]

= =2y - ak)g’(ink)gmk — 2 — o) (i) e > wind;
Wi k ik \ 5
= —2yx — ag)g (ing)a; = —a;Ay,
with Ay, defined as before. To obtain the gradient with respect to the w; ; weights connecting
the input layer to the hidden jlayer, we have to expand out the activations a; and reapply the
chain rule. We will show the derivation in gory detail because it is interesting to see how the
derivative operator propagates back through the network:

OLossy dgling)

da L
— —2 J— — — — _—
B (yr — ax) P 2(yr — ag) B

N 13, :
= —2{yx — ak)gi(-ﬁ”k)é*;u_—]c_ = =24 ij,kaj
J

i Oy 5
Oa,; dglin;)
= —2Apw; L= 2Apw; L
I B 4 PR By
L O
= —2Akwj!kg’(mj)aw_3_
1’3

= ﬁQAkwj,kg’(inj)ai (Z’wi,jai)
wy :

= AZAkwj)kg’(?}nj)a,i = —a;.;Aj‘,

where A; is defined as before. Thus, we obtain the update rules obtained earlier from intuitive

considerations. It is also clear that the process can be continued for networks with more than

one hidden layer, which justifies the general algorithm given in Figure 18.24.

Having made it through (or skipped over) all the mathematics, let’s see how a single-
hidden-layer network performs on the restaurant problem. First, we need to determine the
structure of the network. We have 10 attributes describing each example, so we will need
10 input units. Should we have one hidden layer or two? How many nodes in each layer?
Should they be fully connected? There is no good theory that will tell us the answer. (See the
next section.) As always, we can use cross-validation: try several different structures and see
which one works best, It turns out that a network with one hidden layer containing four nodes
is about right for this problem. In Figure 18.25, we show two curves, The first is a training
curve showing the mean squared error on a given training set of 100 restaurant examples

Chapter 18. Learning from Examples

14 4 .

Ei 209]

,é’ﬁo] g

g 5 0.8

B 8 1 =

g Eor{,

E°] !

: g 06 1! Decision tree

g * g Multilayer networl --------
=

Eﬁ 21 &5 0.5 4
&

0 0.4

0 50 100 150 200 250 300 350 400 0 10 20 30 40 50 60 70 80 S0 100
Number of epochs Training set size

(a) (b)

Tigure 18.25 (a) Training curve showing the gradual reduction in error as weights are
modified over several epachs, for a given set of examples in the restaurant domain. (b)
Comparative learning curves showing that decision-tree learning does slightly better on the
restaurant problem than back-propagation in a multilayer network.

during the weight-updating process. This demonstrates that the network does indeed converge
to a perfect fit to the training data. The second curve is the standard learning curve for the
restaurant data. The neural network does learn well, although not quite as fast as decision-
tree learning; this is perhaps not surprising, because the data were generated from a simple
decision tree in the first place.

Neural networks are capable of far more complex learning tasks of course, although it
must be said that a certain amount of twiddling is needed to get the network structure right
and to achieve convergence to something close to the global optimum in weight space. There
are literally tens of thousands of published applications of neural networks. Section 18.11.1
looks at one such application in more depth.

18.7.5 Learning neural network structures

So far, we have considered the problem of learning weights, given a fixed network structure;
just as with Bayesian nctworks, we also need to understand how to find the best network
structure, If we choose a network that is too big, it will be able to memorize all the examples
by forming a large lookup table, but will not necessarily generalize well to inputs that have
not been seen before. 1% In other words, like all statistical models, neural networks are subject
to overfitting when there are too many parameters in the model. We saw this in Figure 18.1
(page 696), where the high-parameter models in (b) and (c) fit all the data, but might not
generalize as well as the low-parameter models in (a) and (d).

If we stick to fully connected networks, the only choices to be made concern the number

10 Tt has been observed that very large networks do generalize well as long as the weights are kept small. This
restriction keeps the activation values in the linear region of the sigmoid function g(z) where is close to zero,
This, in turn, means that the network behaves like a linear function {Exercise 18.26) with far fewer parameters.

Section 18.8.

Nonparametric Models 737

OPTIMAL BRAIN
DAMAGE

TILING

of hidden layers and their sizes. The usual approach is to try several and keep the best. The
cross-validation techniques of Chapter 18 are needed if we are to avoid peeking at the test
set. That is, we choose the network architecture that gives the highest prediction accuracy on
the validation sets.

If we want to consider networks that are not fully connected, then we need to find
some effective search method through the very large space of possible connection topologies,
The optimal brain damage algorithm begins with a fully connected network and removes
connections from it. After the network is trained for the first time, an information-theoretic
approach identifies an optimal selection of connections that can be dropped. The network
is then retrained, and if its performance has not decreased then the process is repeated. In
addition to removing connections, it is also possible to remove units that are not contributing
much to the result. '

Several algorithms have been proposed for growing a larger network from a smaller one,
One, the tiling algorithm, resembles decision-list leamning. The idea is to start with a single
unit that does its best to produce the comrect output on as many of the training examples as
possible. Subsequent units are added to take care of the examples that the first unit got wrong.
The algorithm adds only as many units as are needed to cover all the examples.

18.8 NONPARAMETRIC MODELS

PARAMETRIC MODEL

NONPARAMETRIC
MODEL

INSTAMCE-BASED
LEARNING

TABLE LOOKUP

Linear regression and neural networks use the training data to estimate a fixed set of param-
eters w. That defines our hypothesis hyw(x), and at that point we can throw away the training
data, because they are all summarized by w. A learning model that summarizes data with a
set of parameters of fixed size (independent of the number of training examples) is called a
parametric model.

No matter how much data you throw at a parametric model, it won’t change its mind
about how many parameters it needs. When data sets are small, it makes sense to have a strong
restriction on the allowable hypotheses, to avoid overfitting. But when there are thousands or
millions or billions of examples to learn from, it seems like a better idea to let the data speak
for themselves rather than forcing them to speak through a tiny vector of parameters. If the
data say that the correct answer is a very wiggly function, we shouldn’t restrict ourselves to
linear or slightly wiggly functions.

A nonparametric model is one that cannot be characterized by a bounded set of param-
eters. For example, suppose that each hypothesis we generate simply retains within itself all
of the training examples and uses all of them to predict the next example. Such a hypothesis
family would be nonparametric because the effective number of parameters is unbounded—
it grows with the number of examples. This approach is called instance-based learning or
memory-based learning. The simplest instance-based learning method is table lookup: take
all the training examples, put them in a lookup table, and then when asked for h(x), see if x is
in the table; if it 1s, return the corresponding %. The problem with this method is that it does
not generalize well: when x is not in the table all it can do is return some default value.

