Resource Constrained Shortest Paths with Side Constraints and Non Linear Costs

Stefano Gualandi stefano.gualandi@unipv.it http://www-dimat.unipv.it/~gualandi twitter: @famo2spaghi

- I. Introduction
- 2. Non Linear Costs
- 3. Iterated Preprocessing
- 4. Lower bounding via Lagrangian Relaxation
- 5. Computational Results

Column Generation Overview

What is *F* in Crew Scheduling problems?

Resource Constrained Shortest Path

The problem of putting together a set of pieces of work into a single duty, that is a column or variable of problem (LP-MP), is formalized as a

Resource Constrained Shortest Path Problem

Example 12 pieces of works, 3 depots

ID	Da	Α	Inizio	Fine
0	NETTPO	RMANAG	04:30	06:20
1	NETTPO	RMLAUREN	04:40	06:20
2	RMLAUREN	NETTPO	06:20	08:15
3	APRILI	LATINA	07:25	08:05
4	ANZICO	NETTPO	13:00	13:40
5	NETTPO	ANZIO	14:00	14:25
6	ANZIO	NETTPO	14:30	14:50
7	NETTPO	ANZIO	14:50	15:20
8	ANZIO	NETTPO	15:30	16:00
9	NETTPO	ANZIO	16:00	16:20
10	ANZIO	NETTPO	16:30	16:55
11	NETTPO	ANZIO	17:30	18:00

Resource Constrained Shortest Path

Let G = (N, A) be the compatibility graph, weighted, directed, and acyclic:

- N = P ∪ {{s^h, t^h}|h ∈ D} a node for each PoW, and a pair of nodes for each depot
- A has an arc for each pair (i, j) of compatible PoW, and (s^h, i) (pull-out) and (i, t^h) (pull-in) ∀h ∈ D and i ∈ P

each arc (i, j) has associated a set of resources r^k_{ij}, for each k ∈ K, e.g. working time, driving time, and break time (other resources may be used to model working regulation)

	NEDEP	ANZICO	12:35	12:55	VAV
4	ANZICO	NETTPO	13:00	13:40	\mathbf{PG}
5	NETTPO	ANZIO	14:00	14:25	\mathbf{PG}
6	ANZIO	NETTPO	14:30	14:50	\mathbf{PG}
7	NETTPO	ANZIO	14:50	15:20	\mathbf{PG}
8	ANZIO	NETTPO	15:30	16:00	\mathbf{PG}
9	NETTPO	ANZIO	16:00	16:20	\mathbf{PG}
10	ANZIO	NETTPO	16:30	16:55	\mathbf{PG}
11	NETTPO	ANZIO	17:30	18:00	\mathbf{PG}
	ANZIO	NEDEP	18:00	18:10	VAV
			durata:	5:35	

Tuesday, June 4, 13

Example of Crew Schedules (with reosurces)

Resources:

- spread time (red)
- In the driving time (light blue), corresponds to PoW

^{Tuesday} June 4, 13 Out-of-service time (yellow)

- Iong break (grey)
- **(3)** breaks (green), very important how they are located

Non Linear Costs

Non Linear Costs

Non Linear Costs

Arc-flow IP formulation with non linear costs $f_h(\cdot)$:

$$\begin{array}{ll} \min & \sum_{e \in A} w_e x_e + \sum_{k \in K} \sum_{h \in H} f_h \left(\sum_{e \in A} r_e^k x_e \right) \\ \text{s.t.} & \sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i = \begin{cases} +1 & \text{if } i = s \\ -1 & \text{if } i = t \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in N \\ & \sum_{e \in A} r_e^k x_e \leq U^k \qquad \qquad \forall k \in K \\ & + \text{ side non linear constraints} \\ & x_e \in \{0, 1\} \qquad \qquad \forall e \in A. \end{cases} \end{array}$$

We restrict to super additive functions: $c(P_1 \cup P_2) \ge c(P_1) + c(P_2)$

 $c(P) = w(P) + f(P) = \sum_{e \in P} w_e + \left(\sum_{e \in P} t_e\right)^2$

 $c(P) = w(P) + f(P) = \sum_{e \in P} w_e + (\sum_{e \in P} t_e)^2$

Optimal Path: $P_2 = \{s, c, i, b, t\}, c(P_2) = 25 + 4 = 29$

$$c(P) = w(P) + f(P) = \sum_{e \in P} w_e + \left(\sum_{e \in P} t_e\right)^2$$

Optimal Path: $P_2 = \{s, c, i, b, t\}, c(P_2) = 25 + 4 = 29$

$$c(P) = w(P) + f(P) = \sum_{e \in P} w_e + \left(\sum_{e \in P} t_e\right)^2$$

Optimal Path: $P_2 = \{s, c, i, b, t\}, c(P_2) = 25 + 4 = 29$

$$c(P) = w(P) + f(P) = \sum_{e \in P} w_e + \left(\sum_{e \in P} t_e\right)^2$$

Path: $P_3 = \{s, a, i, b, t\}, c(P_2) = 20 + 16 = 36$

$$c(P) = w(P) + f(P) = \sum_{e \in P} w_e + \left(\sum_{e \in P} t_e\right)^2$$

Bellmann's optimality conditions do not hold!

- I. Introduction
- 2. Non Linear Costs
- 3. Iterated Preprocessing
- 4. Lower bounding via Lagrangian Relaxation
- 5. Computational Results

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

if
$$r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k$$
 then remove arc $e = (i, j)$
where P_{si}^* and P_{jt}^* are shortest (k-th resource) paths.

h

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

if
$$r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k$$
 then remove arc $e = (i, j)$
where P_{si}^* and P_{jt}^* are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

if
$$r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k$$
 then remove arc $e = (i, j)$
where P_{si}^* and P_{jt}^* are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

if
$$r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k$$
 then remove arc $e = (i, j)$
where P_{si}^* and P_{jt}^* are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

if
$$r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k$$
 then remove arc $e = (i, j)$ where P_{si}^* and P_{jt}^* are shortest (*k*-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)

if
$$r^k(P_{si}^*) + r_e^k + r^k(P_{jt}^*) > U^k$$
 then remove arc $e = (i, j)$
where P_{si}^* and P_{jt}^* are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

Cost-based Preprocessing

Cost-based Preprocessing

Cost-based Preprocessing

- I. Introduction
- 2. Non Linear Costs
- 3. Iterated Preprocessing
- 4. Lower bounding via Lagrangian Relaxation
- 5. Computational Results

Arc-flow IP formulation with non linear costs $f(\cdot)_h$:

$$\begin{array}{ll} \min & \sum_{e \in A} w_e x_e + \sum_{k \in K} \sum_{h \in H} f_h \left(\sum_{e \in A} r_e^k x_e \right) \\ \text{s.t.} & \sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i = \begin{cases} +1 & \text{if } i = s \\ -1 & \text{if } i = t \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in N \\ & \sum_{e \in A} r_e^k x_e \leq U^k \\ & + \text{ side non linear constraints} \\ & x_e \in \{0, 1\} \end{cases} \quad \forall e \in A. \end{array}$$

Arc-flow IP formulation with non linear costs $f(\cdot)$:

$$\begin{array}{ll} \min & \sum_{e \in A} w_e x_e + f\left(\sum_{e \in A} r_e^1 x_e\right) \\ \text{s.t.} & \sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i = \begin{cases} +1 & \text{if } i = s \\ -1 & \text{if } i = t \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in N \\ & \sum_{e \in A} r_e^k x_e \leq U^k \qquad \qquad \forall k \in K \\ & x_e \in \{0, 1\} \end{cases} \qquad \forall e \in A. \end{array}$$

[G.Tsaggouris and C. Zaroliagis, ESA2004]

Arc-flow IP formulation with non linear costs $f(\cdot)$:

$$\begin{array}{ll} \min & \sum_{e \in A} w_e x_e + f\left(z\right) \\ \text{s.t.} & \sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i = \begin{cases} +1 & \text{if } i = s \\ -1 & \text{if } i = t \\ 0 & \text{otherwise} \end{cases} \quad \forall i \in N \\ & \sum_{e \in A} r_e^k x_e \leq U^k \qquad \qquad \forall k \in K \\ & \sum_{e \in A} r_e^1 x_e = z \\ & x_e \in \{0, 1\} \qquad \qquad \forall e \in A. \end{cases}$$

Lower Bounding: Lagrangian Relaxation

The arc-flow LP relaxation of RCSP with a super additive cost function $f(\cdot)$ is:

$$\min \sum_{e \in A} w_e x_e + f(z)$$
(8)
s.t.
$$\sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i \quad \forall i \in N$$
(9)

$$\max \lim_{e \in A} v_e^k x_e \leq U^k \quad \forall k \in K$$
(10)

$$\max \lim_{e \in A} \beta \leq 0 \quad \rightarrow \quad \sum_{e \in A} t_e x_e \leq z$$
(11)

$$x_e \geq 0 \quad \forall e \in A.$$
(12)

Lower Bounding: Lagrangian Relaxation

It is possible to formulate the following Lagrangian dual:

$$\Phi(\alpha,\beta) = -\sum_{k \in K} \alpha_k U^k + \\ +\min \sum_{e \in A} \left(w_e + \sum_{k \in K} \alpha_k r_e^k + \beta t_e \right) x_e + f(z) - \beta z$$

s.t.
$$\sum_{e \in \delta_i^+} x_e - \sum_{e \in \delta_i^-} x_e = b_i \qquad \forall i \in N$$
$$x_e \ge 0 \qquad \forall e \in A.$$

This problem decomposes into two subproblems and is solved via a **subgradient optimization algorithm**:

① The x variables define a *shortest path problem*

② The z variable defines an *unconstrained optimization problem*

if
$$LB(c(P^*_{s \to t})) \ge UB$$
 then remove arc *e*
where $P^*_{s \to t}$ is a shortest path from *s* to *t* via arc *e*.

$$c(P_{s \xrightarrow{e} t}^{*}) \geq \bar{w}(P_{s \xrightarrow{e} t}^{*}) + \min\{f(z) - \bar{\beta}z\}$$

[with reduced costs $\bar{w}_{e} = w_{e} + \sum_{k \in K} \bar{\alpha}_{k}r_{e}^{k} + \bar{\beta}t_{e}$]

Filter and Dive

Near Shortest Path Enumeration

After reaching a fixpoint, if LB < UB then, we apply a **near** shortest path enumeration algorithm (Carlyle et al., 2008).

We compute shortest reversed distances for every resource and for reduced costs

Then we perform a depth-first search from s. When a vertex i is visited, the algorithm backtracks if

- 1) for any resource k, the consumption of P_{si} plus the reversed (resource) distance to t exceeds U^k
- 2 the reduced cost of P_{si} plus the reversed (reduced cost) distance to t exceeds UB
- 3 the cost $c(P_{si}) \ge UB$

- I. Introduction
- 2. Non Linear Costs
- 3. Iterated Preprocessing
- 4. Lower bounding via Lagrangian Relaxation
- 5. Computational Results

Constrained Path Solver: Scalability

Non linear costs: extra allowances

Each row gives the averages over 16 instances, with 7 resources.

• Δ is percentage of removed arcs

• Gap is
$$rac{UB-Opt}{Opt} imes 100$$

GRAPHS		RESOURCE		Reduced Cost			EXACT
п	т	Time	Δ	Time	Δ	Gap	Time
4137	135506	0.77	22.5%	3.12	30.2%	0.0%	75.1
2835	132468	0.59	40.3%	2.35	45.4%	0.0%	30.6
3792	134701	0.92	30.2%	2.87	37.4%	0.0%	69.3

Crew Scheduling: Real Life Instances

Instance	Pieces	Glob. Const.	Depots	
I 58TG	684	4	3	
I7ITG	802	6	6	
I82TG	846	7	7	
217TG	967	8	8	
233TG	1067	8	8	
254TG	1169	10	10	
274TG	1240	11	11	
300TG	1369	12	12	
425TG	1865	32	I6 M.A	I.O.R
560TG	2314	21	10	

Non linear component: step-wise on single resource Side constraints: non linear constraint on break distribution

Impact on Column Generation-based Heuristic

Labeling-heuristic vs. Exact New Algorithm Difference of cost solution obtained via column generation

M.A.I.O.R.

Impact on Column Generation-based Heuristic

