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Column Generation Overview

Introduction Regional Transit Resource Constraint Shortest Path

Column Generation: Algorithmic Persepective

What is F in Crew Scheduling problems?
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Resource Constrained Shortest Path
Introduction Regional Transit Resource Constraint Shortest Path

Column or Variable Generation
The problem of putting together a set of pieces of work into a
single duty, that is a column or variable of problem (LP-MP), is
formalized as a

Resource Constrained Shortest Path Problem

Example 12 pieces of works, 3 depots
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Resource Constrained Shortest Path
Introduction Regional Transit Resource Constraint Shortest Path

Resource Constraint Shortest Path
Let G = (N, A) be the compatibility graph, weighted, directed, and
acyclic:

N = P fi {{s

h, t

h}|h œ D} a node for each PoW, and a pair of
nodes for each depot
A has an arc for each pair (i , j) of compatible PoW, and (sh, i)
(pull-out) and (i , t

h) (pull-in) ’h œ D and i œ P
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Resource Constrained Shortest Path

Introduction Regional Transit Resource Constraint Shortest Path

Resource Constraint Shortest Path

N = P fi {{s

h, t

h}|h œ D}
A has an arc for each pair (i , j) of compatible PoW, and (sh, i)
(pull-out) and (i , t

h) (pull-in) ’h œ D and i œ P

each arc (i , j) has associated a set of resources r

k
ij , for each k œ K ,

e.g. working time, driving time, and break time (other resources
may be used to model working regulation)

The problem of putting together a set of pieces of work into a single 
duty, that is a column or variable of problem (LP-MP), is formalized as a

Resource Constrained Shortest Path Problem

Example:  A possible path/duty on G

Tuesday, June 4, 13
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Example of Crew Schedules (with reosurces)

Introduction Regional Transit Resource Constraint Shortest Path

Example of Crew Schedule (Resources)

Tuesday, June 4, 13

Resources:
1 spread time (red)
2 driving time (light blue), corresponds to PoW
3

out-of-service time (yellow)
4 long break (grey)
5 breaks (green), very important how they are located
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Non Linear Costs
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Resource Constrained Shortest Paths (RCSP)

Introduction Filtering Algorithms Search Tree Computational Results References

Lagrangian Relaxation: Arc-Flow Formulation

Arc-flow IP formulation with non linear costs fh

3
·
4

:

min

ÿ

eœA
wexe +

ÿ

kœK

ÿ

hœH
fh

3 ÿ

eœA
r

k
e xe

4

s.t.

ÿ

eœ”+i

xe ≠
ÿ

eœ”≠
i

xe = bi =

Y
_]

_[

+1 if i = s

≠1 if i = t

0 otherwise

’i œ N

ÿ

eœA
r

k
e xe Æ U

k ’k œ K

+ side non linear constraints

xe œ {0, 1} ’e œ A.
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Resource Constrained Shortest Paths (RCSP)
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Resource Constrained Shortest Paths (RCSP)

We restrict to super additive functions: 

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.
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Resource Constrained Shortest Paths (RCSP)

Example:

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results References

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:

Two subpaths of an optimal path might be not optimal.
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Example: Consider c(P) = w(P) + f
!
P

"
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q
eœP we +

!q
eœP te

"
2

There are 4 paths:

P

1

= {s, a, i , b, t}, w(P
1

) = 20, f
!
P

1

"
= 16, c(P

1

) = 36
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We restrict to super additive functions: 
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Super Additivity

Definition (Path Super Additivity)
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Resource Constrained Shortest Paths (RCSP)

Example:
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Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:
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Optimal Path:  P2 = {s, c, i, b, t},  c(P2) = 25 + 4 = 29
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We restrict to super additive functions: 
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Bellmann’s optimality conditions
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Resource Constrained Shortest Paths (RCSP)

Optimal Path:  P2 = {s, c, i, b, t},  c(P2) = 25 + 4 = 29

14

We restrict to super additive functions: 
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Optimal Path:  P2 = {s, c, i, b, t},  c(P2) = 25 + 4 = 29
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Resource Constrained Shortest Paths (RCSP)

Path:  P3 = {s, a, i, b, t},  c(P2) = 20 + 16 = 36

36

We restrict to super additive functions: 
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Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:
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Bellmann’s optimality conditions do not hold!

We restrict to super additive functions: 
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Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)⌫
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k
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jt) > U

k then remove arc e = (i , j)
where P

ú
si and P

ú
jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.
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Cost-based Filtering

⌫
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�
if LB(c(Pú

s e≠æt
)) Ø UB then remove arc e

where P

ú
s e≠æt

is a shortest path from s to t via arc e.

There are at least three methods to compute such lower bound

(see our poster!)

The most e�ective is based on a Lagrangian Relaxation
UB=7
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Resource Constrained Shortest Paths (RCSP)
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Lagrangian Relaxation: Arc-Flow Formulation
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Lower Bounding: Lagrangian Relaxation
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The arc-flow LP relaxation of RCSP with a super additive cost
function f
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Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results

Lagrangian Relaxation: Arc-Flow Formulation

Iti is possible to formulate the following Lagrangian dual:

�(–, —) = ≠
ÿ

kœK
–kU

k+

+ min

ÿ

eœA

A
we +

ÿ

kœK
–k r

k
e + —te

B
xe + f

!
z

"
≠—z

s.t.

ÿ

eœ”+
i

xe ≠
ÿ

eœ”≠
i

xe = bi ’i œ N

xe Ø 0 ’e œ A.

This problem decomposes into two subproblems and is solved via a

subgradient optimization algorithm:

1
The x variables define a shortest path problem

2
The z variable defines an unconstrained optimization problem

Lower Bounding: Lagrangian Relaxation
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Cost-based Preprocessing via Lagrangian Lower Bounds
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Cost-based Filtering
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if LB(c(Pú

s e≠æt
)) Ø UB then remove arc e

where P

ú
s e≠æt

is a shortest path from s to t via arc e.

There are at least three methods to compute such lower bound

(see our poster!)

The most e�ective is based on a Lagrangian Relaxation
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Filter and Dive

Algorithm 1: FilterAndDive(G,LB,UB,F

g
, B

g
, U

g)

Input: G = (N,A) directed graph and distance function g(·)
Input: (LB,UB) lower and upper bounds on the optimal path
Input: F g, Bg forward and backward shortest path tree as function of g(·)
Input: Ug upper bound on the path length as function of g(·)
Output: An optimum path, or updated UB, or a reduced graph

1 foreach i 2 N do
2 if F g

i +Bg
i > Ug then

3 N  N \ {i}
4 else
5 foreach e = (i, j) 2 A do
6 if F g

i + g(e) +Bg
j > Ug then

7 A A \ {e}
8 else
9 if PathCost(F g

i , e, B
g
j ) < UB^ PathFeasible(F g

i , e, B
g
j ) then

10 P ⇤
st  MakePath(F g

i , e, B
g
j );

11 Update UB and store P ⇤
st;

12 if LB � UB then
13 return P ⇤

st (that is an optimum path)

14 else
15 A A \ {e}

FILTER...

...DIVE

check for side 
constraints
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Near Shortest Path Enumeration
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Closing the Duality Gap

After reaching a fixpoint, if LB < UB then, we apply a near
shortest path enumeration algorithm (Carlyle et al., 2008).

We compute shortest reversed distances for every resource and for

reduced costs

Then we perform a depth-first search from s. When a vertex i is

visited, the algorithm backtracks if

1
for any resource k, the consumption of Psi plus the reversed

(resource) distance to t exceeds U

k

2
the reduced cost of Psi plus the reversed (reduced cost)

distance to t exceeds UB

3
the cost c(Psi) Ø UB
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Constrained Path Solver: Scalability
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Resource and Cost-based Preprocessing
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Computational Results: Stepwise Function

Non linear costs: extra allowances

Each row gives the averages over 16 instances, with 7 resources.

� is percentage of removed arcs

Gap is

UB≠Opt
Opt ◊ 100

Graphs Resource Reduced Cost Exact

n m Time � Time � Gap Time
4137 135506 0.77 22.5% 3.12 30.2% 0.0% 75.1
2835 132468 0.59 40.3% 2.35 45.4% 0.0% 30.6
3792 134701 0.92 30.2% 2.87 37.4% 0.0% 69.3

Thursday, September 19, 13



Crew Scheduling: Real Life Instances

Instance Pieces Glob. Const. Depots

158TG 684 4 3

171TG 802 6 6

182TG 846 7 7

217TG 967 8 8

233TG 1067 8 8

254TG 1169 10 10

274TG 1240 11 11

300TG 1369 12 12

425TG 1865 32 16

560TG 2314 21 10

Non linear component: step-wise on single resource
Side constraints: non linear constraint on break distribution

Logo vettoriale MAIOR Orizzontale

Logo vettoriale MAIOR Verticale
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Impact on Column Generation-based Heuristic

5

Miglioram. (%) costi sol. e tempi

Test Miglior. 
Costo %

Miglior. 
Tmp %

158TG 0.33% 94.72%

171TG 0.34% 41.62%

182TG -0.25% 43.95%

217TG -0.19% 61.27%

233TG 0.06% 62.64%

254TG 0.08% 45.69%

274TG 0.50% 57.27%

300TG 0.34% 59.77%

425TG 0.74% 58.72%

560TG 0.78% 46.89%
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