
Resource Constrained Shortest Paths with
Side Constraints and Non Linear Costs

Stefano Gualandi
stefano.gualandi@unipv.it

http://www-dimat.unipv.it/~gualandi
twitter: @famo2spaghi

Thursday, September 19, 13

1. Introduction

2. Non Linear Costs

3. Iterated Preprocessing

4. Lower bounding via Lagrangian Relaxation

5. Computational Results

Outline

Thursday, September 19, 13

Column Generation Overview

Introduction Regional Transit Resource Constraint Shortest Path

Column Generation: Algorithmic Persepective

What is F in Crew Scheduling problems?
Thursday, September 19, 13

Resource Constrained Shortest Path
Introduction Regional Transit Resource Constraint Shortest Path

Column or Variable Generation
The problem of putting together a set of pieces of work into a
single duty, that is a column or variable of problem (LP-MP), is
formalized as a

Resource Constrained Shortest Path Problem

Example 12 pieces of works, 3 depots

Thursday, September 19, 13

Resource Constrained Shortest Path
Introduction Regional Transit Resource Constraint Shortest Path

Resource Constraint Shortest Path
Let G = (N, A) be the compatibility graph, weighted, directed, and
acyclic:

N = P fi {{s

h, t

h}|h œ D} a node for each PoW, and a pair of
nodes for each depot
A has an arc for each pair (i , j) of compatible PoW, and (sh, i)
(pull-out) and (i , t

h) (pull-in) ’h œ D and i œ P

Thursday, September 19, 13

Resource Constrained Shortest Path

Introduction Regional Transit Resource Constraint Shortest Path

Resource Constraint Shortest Path

N = P fi {{s

h, t

h}|h œ D}
A has an arc for each pair (i , j) of compatible PoW, and (sh, i)
(pull-out) and (i , t

h) (pull-in) ’h œ D and i œ P

each arc (i , j) has associated a set of resources r

k
ij , for each k œ K ,

e.g. working time, driving time, and break time (other resources
may be used to model working regulation)

The problem of putting together a set of pieces of work into a single
duty, that is a column or variable of problem (LP-MP), is formalized as a

Resource Constrained Shortest Path Problem

Example: A possible path/duty on G

Tuesday, June 4, 13

Thursday, September 19, 13

Example of Crew Schedules (with reosurces)

Introduction Regional Transit Resource Constraint Shortest Path

Example of Crew Schedule (Resources)

Tuesday, June 4, 13

Resources:
1 spread time (red)
2 driving time (light blue), corresponds to PoW
3

out-of-service time (yellow)
4 long break (grey)
5 breaks (green), very important how they are located

Thursday, September 19, 13

Non Linear Costs

Thursday, September 19, 13

Non Linear Costs

Thursday, September 19, 13

Non Linear Costs

0
20
0

40
0

60
0

80
0

Time

f(t
(P

))
=

st
ep

(t(
P)

) +
 (t

(P
))^

2

0 60 120 180 240 300 360 420 480 540 600 660 720

Thursday, September 19, 13

Resource Constrained Shortest Paths (RCSP)

Introduction Filtering Algorithms Search Tree Computational Results References

Lagrangian Relaxation: Arc-Flow Formulation

Arc-flow IP formulation with non linear costs fh

3
·
4

:

min

ÿ

eœA
wexe +

ÿ

kœK

ÿ

hœH
fh

3 ÿ

eœA
r

k
e xe

4

s.t.

ÿ

eœ”+i

xe ≠
ÿ

eœ”≠
i

xe = bi =

Y
_]

_[

+1 if i = s

≠1 if i = t

0 otherwise

’i œ N

ÿ

eœA
r

k
e xe Æ U

k ’k œ K

+ side non linear constraints

xe œ {0, 1} ’e œ A.

Thursday, September 19, 13

s

c d

ba

i t

5, 1 5, 1 5, 1 5, 1

10, 0 5, 0 10, 0 5, 0

we, te

Resource Constrained Shortest Paths (RCSP)

Thursday, September 19, 13

s

c d

ba

i t

5, 1 5, 1 5, 1 5, 1

10, 0 5, 0 10, 0 5, 0

we, te

Resource Constrained Shortest Paths (RCSP)

We restrict to super additive functions:

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.

Thursday, September 19, 13

s

c d

ba

i t

5, 1 5, 1 5, 1 5, 1

10, 0 5, 0 10, 0 5, 0

we, te

Resource Constrained Shortest Paths (RCSP)

Example:

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results References

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:

Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
!
P

"
=

q
eœP we +

!q
eœP te

"
2

There are 4 paths:

P

1

= {s, a, i , b, t}, w(P
1

) = 20, f
!
P

1

"
= 16, c(P

1

) = 36

P

2

= {s, c, i , b, t}, w(P
2

) = 25, f
!
P

2

"
= 4, c(P

2

) = 29

P

3

= {s, a, i , d , t}, w(P
3

) = 25, f
!
P

3

"
= 4, c(P

3

) = 29

P

4

= {s, c, i , d , t}, w(P
4

) = 30, f
!
P

4

"
= 0, c(P

4

) = 30

We restrict to super additive functions:

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.

Thursday, September 19, 13

s

c d

ba

i t

5, 1 5, 1

10, 0 5, 0

we, te

Resource Constrained Shortest Paths (RCSP)

Example:

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results References

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:

Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
!
P

"
=

q
eœP we +

!q
eœP te

"
2

There are 4 paths:

P

1

= {s, a, i , b, t}, w(P
1

) = 20, f
!
P

1

"
= 16, c(P

1

) = 36

P

2

= {s, c, i , b, t}, w(P
2

) = 25, f
!
P

2

"
= 4, c(P

2

) = 29

P

3

= {s, a, i , d , t}, w(P
3

) = 25, f
!
P

3

"
= 4, c(P

3

) = 29

P

4

= {s, c, i , d , t}, w(P
4

) = 30, f
!
P

4

"
= 0, c(P

4

) = 30

Optimal Path: P2 = {s, c, i, b, t}, c(P2) = 25 + 4 = 29

5, 1 5, 1

10, 0 5, 0

We restrict to super additive functions:

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.

Thursday, September 19, 13

Example:

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results References

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:

Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
!
P

"
=

q
eœP we +

!q
eœP te

"
2

There are 4 paths:

P

1

= {s, a, i , b, t}, w(P
1

) = 20, f
!
P

1

"
= 16, c(P

1

) = 36

P

2

= {s, c, i , b, t}, w(P
2

) = 25, f
!
P

2

"
= 4, c(P

2

) = 29

P

3

= {s, a, i , d , t}, w(P
3

) = 25, f
!
P

3

"
= 4, c(P

3

) = 29

P

4

= {s, c, i , d , t}, w(P
4

) = 30, f
!
P

4

"
= 0, c(P

4

) = 30

s

c d

ba

i t

5, 1 5, 1 5, 1 5, 1

10, 0 5, 0 10, 0 5, 0

we, te

15

Resource Constrained Shortest Paths (RCSP)

Optimal Path: P2 = {s, c, i, b, t}, c(P2) = 25 + 4 = 29

14

We restrict to super additive functions:

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.

Thursday, September 19, 13

Example:

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results References

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:

Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
!
P

"
=

q
eœP we +

!q
eœP te

"
2

There are 4 paths:

P

1

= {s, a, i , b, t}, w(P
1

) = 20, f
!
P

1

"
= 16, c(P

1

) = 36

P

2

= {s, c, i , b, t}, w(P
2

) = 25, f
!
P

2

"
= 4, c(P

2

) = 29

P

3

= {s, a, i , d , t}, w(P
3

) = 25, f
!
P

3

"
= 4, c(P

3

) = 29

P

4

= {s, c, i , d , t}, w(P
4

) = 30, f
!
P

4

"
= 0, c(P

4

) = 30

s

c d

ba

i t

5, 1 5, 1 5, 1 5, 1

10, 0 5, 0 10, 0 5, 0

we, te

15

14

Resource Constrained Shortest Paths (RCSP)

Optimal Path: P2 = {s, c, i, b, t}, c(P2) = 25 + 4 = 29

14

We restrict to super additive functions:

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.

Thursday, September 19, 13

Example:

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results References

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:

Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
!
P

"
=

q
eœP we +

!q
eœP te

"
2

There are 4 paths:

P

1

= {s, a, i , b, t}, w(P
1

) = 20, f
!
P

1

"
= 16, c(P

1

) = 36

P

2

= {s, c, i , b, t}, w(P
2

) = 25, f
!
P

2

"
= 4, c(P

2

) = 29

P

3

= {s, a, i , d , t}, w(P
3

) = 25, f
!
P

3

"
= 4, c(P

3

) = 29

P

4

= {s, c, i , d , t}, w(P
4

) = 30, f
!
P

4

"
= 0, c(P

4

) = 30

s

c d

ba

i t

5, 1 5, 1 5, 1 5, 1

10, 0 5, 0 10, 0 5, 0

we, te

Resource Constrained Shortest Paths (RCSP)

Path: P3 = {s, a, i, b, t}, c(P2) = 20 + 16 = 36

36

We restrict to super additive functions:

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.

Thursday, September 19, 13

Example:

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results References

Bellmann’s optimality conditions

Super additivity invalidates Bellmann’s optimality conditions:

Two subpaths of an optimal path might be not optimal.

s

c

a

d

b

t i

we,te
5,1 5,1 5,1 5,1

10,0 5,0 10,0 5,0

Example: Consider c(P) = w(P) + f
!
P

"
=

q
eœP we +

!q
eœP te

"
2

There are 4 paths:

P

1

= {s, a, i , b, t}, w(P
1

) = 20, f
!
P

1

"
= 16, c(P

1

) = 36

P

2

= {s, c, i , b, t}, w(P
2

) = 25, f
!
P

2

"
= 4, c(P

2

) = 29

P

3

= {s, a, i , d , t}, w(P
3

) = 25, f
!
P

3

"
= 4, c(P

3

) = 29

P

4

= {s, c, i , d , t}, w(P
4

) = 30, f
!
P

4

"
= 0, c(P

4

) = 30

s

c d

ba

i t

5, 1 5, 1 5, 1 5, 1

10, 0 5, 0 10, 0 5, 0

we, te

15

14

Resource Constrained Shortest Paths (RCSP)

Bellmann’s optimality conditions do not hold!

We restrict to super additive functions:

Introduction Filtering Algorithms Search Tree Computational Results References

Super Additivity

Definition (Path Super Additivity)

A (path) cost function is super additive i�:

c(P
1

fi P

2

) Ø c(P
1

) + c(P
2

) (1)

We consider here a specific type of super additive cost function:

c(P) = w(P) + f
3

t(P)
4

=
ÿ

eœP
we + f

3 ÿ

eœP
te

4

where f
!

·
"

is a super additive function. Since w(P) is additive,

c(P) is also super additive.

Thursday, September 19, 13

1. Introduction

2. Non Linear Costs

3. Iterated Preprocessing

4. Lower bounding via Lagrangian Relaxation

5. Computational Results

Outline

Thursday, September 19, 13

Introduction Filtering Algorithms Search Tree Computational Results References

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)⌫

�

�
if r

k(Pú
si) + r

k
e + r

k(Pú
jt) > U

k then remove arc e = (i , j)
where P

ú
si and P

ú
jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

Resource-based Preprocessing

Thursday, September 19, 13

Introduction Filtering Algorithms Search Tree Computational Results References

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)⌫

�

�
if r

k(Pú
si) + r

k
e + r

k(Pú
jt) > U

k then remove arc e = (i , j)
where P

ú
si and P

ú
jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

s

c d

ba

t

2

6

1

1

4 2

re

13
2

Resource-based Preprocessing

Thursday, September 19, 13

Introduction Filtering Algorithms Search Tree Computational Results References

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)⌫

�

�
if r

k(Pú
si) + r

k
e + r

k(Pú
jt) > U

k then remove arc e = (i , j)
where P

ú
si and P

ú
jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

s

c d

ba

t

2

6

1

1

4 2

re

13
2

Resource-based Preprocessing

Thursday, September 19, 13

Introduction Filtering Algorithms Search Tree Computational Results References

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)⌫

�

�
if r

k(Pú
si) + r

k
e + r

k(Pú
jt) > U

k then remove arc e = (i , j)
where P

ú
si and P

ú
jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

s

c d

ba

t

2

6

1

1

4 2

re

13
2

Resource-based Preprocessing

Thursday, September 19, 13

Introduction Filtering Algorithms Search Tree Computational Results References

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)⌫

�

�
if r

k(Pú
si) + r

k
e + r

k(Pú
jt) > U

k then remove arc e = (i , j)
where P

ú
si and P

ú
jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

s

c d

ba

t

2

6

1

1

4 2

re

13
2

Resource-based Preprocessing

Thursday, September 19, 13

Introduction Filtering Algorithms Search Tree Computational Results References

Resource-based Filtering

(Beasley and Christofides, 1989; Dumitrescu and Boland, 2003; Sellmann et al., 2007)⌫

�

�
if r

k(Pú
si) + r

k
e + r

k(Pú
jt) > U

k then remove arc e = (i , j)
where P

ú
si and P

ú
jt are shortest (k-th resource) paths.

Resource consumption of each arc. Upper resource bound U = 7.

s

c

a

d

b

t

6

3 2 1

1

2

4

1

2

s

c

a

d

b

t 3 2 1

1

2

4

1

2

s

c

a

d

b

t
2 1

1

2

4

1

2

s

c

a

d

b

t
2

1

4

1

2

s

c d

ba

t

2

6

1

1

4 2

re

13
2

Resource-based Preprocessing

Thursday, September 19, 13

s

c d

ba

t

2

6

1

1

4 2

ce

13
2

Cost-based Preprocessing

UB=7

Thursday, September 19, 13

s

c d

ba

t

2

6

1

1

4 2

ce

13
2

Cost-based Preprocessing

UB=7

Thursday, September 19, 13

s

c d

ba

t

2

6

1

1

4 2

ce

13
2

Cost-based Preprocessing

Introduction Filtering Algorithms Search Tree Computational Results References

Cost-based Filtering

⌫

�

�
if LB(c(Pú

s e≠æt
)) Ø UB then remove arc e

where P

ú
s e≠æt

is a shortest path from s to t via arc e.

There are at least three methods to compute such lower bound

(see our poster!)

The most e�ective is based on a Lagrangian Relaxation
UB=7

Thursday, September 19, 13

1. Introduction

2. Non Linear Costs

3. Iterated Preprocessing

4. Lower bounding via Lagrangian Relaxation

5. Computational Results

Outline

Thursday, September 19, 13

Resource Constrained Shortest Paths (RCSP)

Introduction Filtering Algorithms Search Tree Computational Results References

Lagrangian Relaxation: Arc-Flow Formulation

Arc-flow IP formulation with non linear costs f
!

·
"

h:

min

ÿ

eœA
wexe +

ÿ

kœK

ÿ

hœH
fh

3 ÿ

eœA
r

k
e xe

4

s.t.

ÿ

eœ”+i

xe ≠
ÿ

eœ”≠
i

xe = bi =

Y
_]

_[

+1 if i = s

≠1 if i = t

0 otherwise

’i œ N

ÿ

eœA
r

k
e xe Æ U

k ’k œ K

+ side non linear constraints

xe œ {0, 1} ’e œ A.

Thursday, September 19, 13

Resource Constrained Shortest Paths (RCSP)

Introduction Filtering Algorithms Search Tree Computational Results References

Lagrangian Relaxation: Arc-Flow Formulation

Arc-flow IP formulation with non linear costs f
!

·
"
:

min

ÿ

eœA
wexe + f

3 ÿ

eœA
r

1

e xe

4

s.t.

ÿ

eœ”+i

xe ≠
ÿ

eœ”≠
i

xe = bi =

Y
_]

_[

+1 if i = s

≠1 if i = t

0 otherwise

’i œ N

ÿ

eœA
r

k
e xe Æ U

k ’k œ K

xe œ {0, 1} ’e œ A.

[G. Tsaggouris and C. Zaroliagis, ESA2004]
Thursday, September 19, 13

Resource Constrained Shortest Paths (RCSP)

Introduction Filtering Algorithms Search Tree Computational Results References

Lagrangian Relaxation: Arc-Flow Formulation

Arc-flow IP formulation with non linear costs f
!

·
"
:

min

ÿ

eœA
wexe + f

3
z

4

s.t.

ÿ

eœ”+i

xe ≠
ÿ

eœ”≠
i

xe = bi =

Y
_]

_[

+1 if i = s

≠1 if i = t

0 otherwise

’i œ N

ÿ

eœA
r

k
e xe Æ U

k ’k œ K

ÿ

eœA
r

1

e xe = z

xe œ {0, 1} ’e œ A.

Thursday, September 19, 13

Lower Bounding: Lagrangian Relaxation

Introduction Driver Scheduling Constrained Shortest Path Computational Results Current Work

� � � �� � � �� � � � �� � � ��� � � � �� �� �� � � � �� � �� ��� �

The arc-flow LP relaxation of RCSP with a super additive cost
function f

!
·
"

is:

min
ÿ

eœA
wexe + f

!
z

"
(8)

s.t.
ÿ

eœ”+i

xe ≠
ÿ

eœ”≠
i

xe = bi ’i œ N (9)

multiplier –k Æ 0 æ
ÿ

eœA
r

k
e xe Æ U

k ’k œ K (10)

multiplier — Æ 0 æ
ÿ

eœA
texe Æ z (11)

xe Ø 0 ’e œ A. (12)

Thursday, September 19, 13

Introduction Reduction Techniques Lagrangian Relaxation Closing the Duality Gap Computational Results

Lagrangian Relaxation: Arc-Flow Formulation

Iti is possible to formulate the following Lagrangian dual:

�(–, —) = ≠
ÿ

kœK
–kU

k+

+ min

ÿ

eœA

A
we +

ÿ

kœK
–k r

k
e + —te

B
xe + f

!
z

"
≠—z

s.t.

ÿ

eœ”+
i

xe ≠
ÿ

eœ”≠
i

xe = bi ’i œ N

xe Ø 0 ’e œ A.

This problem decomposes into two subproblems and is solved via a

subgradient optimization algorithm:

1
The x variables define a shortest path problem

2
The z variable defines an unconstrained optimization problem

Lower Bounding: Lagrangian Relaxation

Thursday, September 19, 13

Cost-based Preprocessing via Lagrangian Lower Bounds

Introduction Filtering Algorithms Search Tree Computational Results References

Cost-based Filtering

⌫

�

�
if LB(c(Pú

s e≠æt
)) Ø UB then remove arc e

where P

ú
s e≠æt

is a shortest path from s to t via arc e.

There are at least three methods to compute such lower bound

(see our poster!)

The most e�ective is based on a Lagrangian Relaxation

Introduction Filtering Algorithms Search Tree Computational Results References

Cost-based Filtering

⌫

�

�
if LB(c(Pú

s e≠æt
)) Ø UB then remove arc e

where P

ú
s e≠æt

is a shortest path from s to t via arc e.

There are at least three methods to compute such lower bound

(see our poster!)

The most e�ective is based on a Lagrangian Relaxation⌫

�

�
c(Pú

s e≠æt
) Ø w̄(Pú

s e≠æt
) + min{f

!
z

"
≠ —̄z}

[with reduced costs w̄e = we +
q

kœK –̄k r

k
e + —̄te]

Thursday, September 19, 13

Filter and Dive

Algorithm 1: FilterAndDive(G,LB,UB,F

g
, B

g
, U

g)

Input: G = (N,A) directed graph and distance function g(·)
Input: (LB,UB) lower and upper bounds on the optimal path
Input: F g, Bg forward and backward shortest path tree as function of g(·)
Input: Ug upper bound on the path length as function of g(·)
Output: An optimum path, or updated UB, or a reduced graph

1 foreach i 2 N do
2 if F g

i +Bg
i > Ug then

3 N N \ {i}
4 else
5 foreach e = (i, j) 2 A do
6 if F g

i + g(e) +Bg
j > Ug then

7 A A \ {e}
8 else
9 if PathCost(F g

i , e, B
g
j) < UB^ PathFeasible(F g

i , e, B
g
j) then

10 P ⇤
st MakePath(F g

i , e, B
g
j);

11 Update UB and store P ⇤
st;

12 if LB � UB then
13 return P ⇤

st (that is an optimum path)

14 else
15 A A \ {e}

FILTER...

...DIVE

check for side
constraints

Thursday, September 19, 13

Near Shortest Path Enumeration

Introduction Filtering Algorithms Search Tree Computational Results References

Closing the Duality Gap

After reaching a fixpoint, if LB < UB then, we apply a near
shortest path enumeration algorithm (Carlyle et al., 2008).

We compute shortest reversed distances for every resource and for

reduced costs

Then we perform a depth-first search from s. When a vertex i is

visited, the algorithm backtracks if

1
for any resource k, the consumption of Psi plus the reversed

(resource) distance to t exceeds U

k

2
the reduced cost of Psi plus the reversed (reduced cost)

distance to t exceeds UB

3
the cost c(Psi) Ø UB

Thursday, September 19, 13

1. Introduction

2. Non Linear Costs

3. Iterated Preprocessing

4. Lower bounding via Lagrangian Relaxation

5. Computational Results

Outline

Thursday, September 19, 13

Constrained Path Solver: Scalability

Thursday, September 19, 13

Resource and Cost-based Preprocessing

Introduction Filtering Algorithms Search Tree Computational Results References

Computational Results: Stepwise Function

Non linear costs: extra allowances

Each row gives the averages over 16 instances, with 7 resources.

� is percentage of removed arcs

Gap is

UB≠Opt
Opt ◊ 100

Graphs Resource Reduced Cost Exact

n m Time � Time � Gap Time
4137 135506 0.77 22.5% 3.12 30.2% 0.0% 75.1
2835 132468 0.59 40.3% 2.35 45.4% 0.0% 30.6
3792 134701 0.92 30.2% 2.87 37.4% 0.0% 69.3

Thursday, September 19, 13

Crew Scheduling: Real Life Instances

Instance Pieces Glob. Const. Depots

158TG 684 4 3

171TG 802 6 6

182TG 846 7 7

217TG 967 8 8

233TG 1067 8 8

254TG 1169 10 10

274TG 1240 11 11

300TG 1369 12 12

425TG 1865 32 16

560TG 2314 21 10

Non linear component: step-wise on single resource
Side constraints: non linear constraint on break distribution

Logo vettoriale MAIOR Orizzontale

Logo vettoriale MAIOR Verticale

Thursday, September 19, 13

Impact on Column Generation-based Heuristic

5

Miglioram. (%) costi sol. e tempi

Test Miglior.
Costo %

Miglior.
Tmp %

158TG 0.33% 94.72%

171TG 0.34% 41.62%

182TG -0.25% 43.95%

217TG -0.19% 61.27%

233TG 0.06% 62.64%

254TG 0.08% 45.69%

274TG 0.50% 57.27%

300TG 0.34% 59.77%

425TG 0.74% 58.72%

560TG 0.78% 46.89%

158TG 171TG 182TG 217TG 233TG 254TG 274TG 300TG 425TG 560TG

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

Miglioram costo (%)

Barbaram sostituendo il nostro
generatore con il nuovo e verificando

l'impatto sulle 40 sol intere

158TG 171TG 182TG 217TG 233TG 254TG 274TG 300TG 425TG 560TG

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Miglioram Tempo (%)
Labeling-heuristic vs. Exact New Algorithm

Difference of cost solution obtained via column generation

Logo vettoriale MAIOR Orizzontale

Logo vettoriale MAIOR Verticale

Thursday, September 19, 13

5

Miglioram. (%) costi sol. e tempi

Test Miglior.
Costo %

Miglior.
Tmp %

158TG 0.33% 94.72%

171TG 0.34% 41.62%

182TG -0.25% 43.95%

217TG -0.19% 61.27%

233TG 0.06% 62.64%

254TG 0.08% 45.69%

274TG 0.50% 57.27%

300TG 0.34% 59.77%

425TG 0.74% 58.72%

560TG 0.78% 46.89%

158TG 171TG 182TG 217TG 233TG 254TG 274TG 300TG 425TG 560TG

-0.40%

-0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

Miglioram costo (%)

Barbaram sostituendo il nostro
generatore con il nuovo e verificando

l'impatto sulle 40 sol intere

158TG 171TG 182TG 217TG 233TG 254TG 274TG 300TG 425TG 560TG

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Miglioram Tempo (%)

Impact on Column Generation-based Heuristic

Labeling-heuristic vs. Exact New Algorithm
Difference of run time obtained via column generation

Logo vettoriale MAIOR Orizzontale

Logo vettoriale MAIOR Verticale

Thursday, September 19, 13

