
DM204 – Autumn 2013

Scheduling, Timetabling and Routing

Lecture 10
Workforce Scheduling

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Workforce Scheduling
Shift Scheduling
Crew Scheduling
Nurse SchedulingOutline

1. Workforce Scheduling

2. Shift Scheduling

3. Crew Scheduling

4. Nurse Scheduling

2



Workforce Scheduling
Shift Scheduling
Crew Scheduling
Nurse SchedulingCourse Overview

4 Scheduling
4 Classification
4 Complexity issues
4 Single Machine
6 Parallel Machine
6 Flow Shop and Job Shop
6 Resource Constrained Project

Scheduling Model

Timetabling
6 Sport Timetabling
4 Workforce Scheduling

Reservations and Education
4 Crew Scheduling
4 Public Transports

Vechicle Routing
Integer Programming
Approaches
Construction Heuristics
Local Search Algorithms

3



Workforce Scheduling
Shift Scheduling
Crew Scheduling
Nurse SchedulingOutline

1. Workforce Scheduling

2. Shift Scheduling

3. Crew Scheduling

4. Nurse Scheduling

4



Workforce Scheduling
Shift Scheduling
Crew Scheduling
Nurse SchedulingWorkforce Scheduling

Overview

Shift/Duty: consecutive working hours / sequence of tasks

Which is their length? What are they made of?

Which ones are needed?

The two questions may be addressed together or separatedly.
Eg, shift scheduling, crew scheduling, manpower planning

Roster: shift and rest day patterns over a fixed period of time
(a week or a month)
Two main approaches:

coordinate the design of the rosters and the assignment of the shifts
to the employees, and solve it as a single problem.

consider the scheduling of the actual employees only after the
rosters are designed, solve two problems in series.

Features to consider: rest periods, days off, preferences, availabilities, skills.
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Creating daily shifts:

during each period, bi persons required
decide working rosters made of m time intervals not necessarily identical
n different shift patterns (columns of matrix A) each with a cost c

min cT x

st Ax ≥ b

x ≥ 0 and integer

min cT x

10am − 11pm
11am − 12am
12am − 1pm
1pm − 2pm
2pm − 3pm
3pm − 4pm
4pm − 5pm



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1


x ≥



1
2
2
3
4
2
2


x ≥ 0 and integer
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Assign persons to an m-period cyclic schedule so that:
requirements bi are met
each person works a shift of k consecutive periods and is free for the
other m − k periods. (periods 1 and m are consecutive)

and the cost of the assignment is minimized.

min cT x

st

Monday
Tuesday

Wednesday
Thursday

Friday
Saturday

Sunday



1 0 0 1 1 1 1
1 1 0 0 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1


x ≥



3
4
6
4
7
8
7


x ≥ 0 and integer

(IP)
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Resume’

Recall: Totally Unimodular Matrices

Definition: A matrix A is totally unimodular (TU) if every square submatrix
of A has determinant +1, -1 or 0.

Proposition 1: The linear program max{cx : Ax ≤ b, x ∈ Rm
+} has an

integral optimal solution for all integer vectors b for which it has a finite
optimal value if A is totally unimodular

Recognizing total unimodularity can be done in polynomial time
(see [Schrijver, 1986])
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Resume’

Definition

A (0, 1)–matrix B has the consecutive 1’s property if for any column j ,
bij = bi ′j = 1 with i < i ′ implies blj = 1 for i < l < i ′.
That is, if there is a permutation of the rows such that the 1’s in each
column appear consecutively.

Whether a matrix has the consecutive 1’s property can be determined in
polynomial time [ D. R. Fulkerson and O. A. Gross; Incidence matrices and
interval graphs. 1965 Pacific J. Math. 15(3) 835-855.]

A matrix with consecutive 1’s property is called an interval matrix

Proposition: Consecutive 1’s matrices are TUM.
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What about this matrix? 

1 0 0 1 1 1 1
1 1 0 0 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1


Definition A (0, 1)-matrix B has the circular 1’s property for columns (resp.
for rows) if the rows of B can be permuted so that the 1’s appear
consecutively in each column, that is, appear in a circularly consecutive
fashion.

The circular 1’s property for rows does not imply circular 1’s property for
columns.

Whether a matrix has the circular 1’s property for columns (resp. rows) can
be determined in O(m2n) time [A. Tucker, Matrix characterizations of
circular-arc graphs. (1971) Pacific J. Math. 39(2) 535-545] 15
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Integer programs where the constraint matrix A have the circular 1’s property
for columns can be solved efficiently as follows:

Step 1 Solve the linear relaxation of (IP) to obtain x ′1, . . . , x
′
n. If x ′1, . . . , x

′
n

are integer, then it is optimal for (IP) and STOP. Otherwise go to Step
2.

Step 2 Form two linear programs LP1 and LP2 from the relaxation of the
original problem by adding respectively the constraints

x1 + . . .+ xn = bx ′1 + . . .+ x ′nc (LP1)

and

x1 + . . .+ xn = dx ′1 + . . .+ x ′ne (LP2)

From LP1 and LP2 an integral solution certainly arises (P)

16



Cyclic Staffing with Overtime

Hourly requirements bi

Basic work shift 8 hours
Overtime of up to additional 8 hours possible
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Days-Off Scheduling

Guarantee two days-off each week, including every other weekend.

IP with matrix A:
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Cyclic Staffing with Part-Time Workers

Columns of A describe the work-shifts
Part-time employees can be hired for each time period i at cost c ′i per
worker

min cx + c ′x ′

st Ax + Ix ′ ≥ b

x , x ′ ≥ 0 and integer
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Cyclic Staffing with Linear Penalties for Understaffing and Overstaffing

demands are not rigid
a cost c ′i for understaffing and a cost c ′′i for overstaffing
x ′ level of understaffing

min cx + c ′x ′ + c ′′(b − Ax − x ′)

st Ax + Ix ′ ≥ b

x , x ′ ≥ 0 and integer
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Aka Manpower Planning

Cover a number of job functions using the least possible resources

Constraints difficult to formulate.

Air-crew scheduling

Hospital-crew scheduling

Supermarket-crew scheduling

Model is general that it can handle transportation issues.

min cT x
Ax ≥ 1
x ∈ {0, 1}

Set covering/partitioning model

where aij is 1 iff job i is covered by job schedule (shift) j , and cj is cost of
schedule j .
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Pairings problem

Input:
A set of m flight legs (departure, arrival, duration)

A set of crews

A set of n (very large) feasible and permissible combinations of flights
legs that a crew can handle (eg, round trips)

A flight leg i can be part of more than one round trip

Each round trip j has a cost cj

Output: A set of round trips of mimimun total cost

Set partitioning problem:

min c1x1 + c2x2 + . . .+ cnxn

a11x1 + a12x2 + . . .+ . . . a1nxn = 1
a21x1 + a22x2 + . . .+ . . . a2nxn = 1
...
am1x1 + am2x2 + . . .+ . . . amnxn = 1
xj ∈ {0, 1}, ∀j = 1, . . . , n
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Set partitioning or set covering??

Often treated as set covering because:
its linear programming relaxation is numerically more stable and thus
easier to solve
it is trivial to construct a feasible integer solution from a solution to the
linear programming relaxation
it makes it possible to restrict to only rosters of maximal length
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Generalization of set partitioning

With a set of p crew members
Generalized set partitioning problem:

min c1x1 + c2x2 + . . .+ cnxn

a11x1 + a12x2+ . . . + . . . a1nxn = b1

a21x1 + a22x2+ . . . + . . . a2nxn = b2
...
am1x1 + am2x2+ . . . + . . . amnxn = b3

x1 + x2 + . . . xl = 1
xi + xi+1 + . . . xs = 1

...
xj ∈ {0, 1}, ∀j = 1, . . . , n
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1. if eT
i A = 0 then the ith row can never be satisfied

[
0 0 . . . 1 . . . 0

]


 =



0
0
0
...
0
0


2. if eT

i A = ek then xk = 1 in every feasible solution

[
0 0 . . . 1 . . . 0

]
 1

 =



0
...
1
...
0
0


In SPP can remove all
rows t with atk = 1
and set xj = 0 (and
then remove cols) for
all cols that cover t
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3. if eT
t A ≥ eT

p A then we can remove row t, row p dominates row t (by
covering p we cover t)

1 1 1

1 1


In SPP we can remove
all cols j :
atj = 1, apj = 0

4. if
∑

j∈S Aej = Aek and
∑

j∈S cj ≤ ck then we can cover the rows by Aek
more cheaply with S and set xk = 0
(Note, we cannot remove S if

∑
j∈S cj ≥ ck)

1 1
1 1

1 1
0 0 0 0
1 1
0 0 0 0
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Try to make the constraint matrix such that the polytope that it generates
has integral vertices, ie, the solution to the linear relaxation of the set
covering problem is integer.

Two ways:

Generate columns that yield a certain structure in the matrix, ie,
balanced matrix

in branch and bound branch by introducing constraitns that bring the
matrix closer to have a certain structure, ie, to be a balance matrix.
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Solving the SPP and SCP integer program

trivial 1–0 branching leads to a very unbalanced tree in which the
0-branch has little effect

constraint branching [Ryan, Foster, 1981]
Identify constraints r1, r2 with

0 <
∑

j∈J(r1,r2)

xj < 1

J(r1, r2) all columns covering r1, r2 simultaneously.
(there certainly exists one such pair of constraints)
Branch on:

/ \∑
j∈J(r1,r2)

xj ≤ 0
∑

j∈J(r1,r2)

xj ≥ 1
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Motivation:

A balanced matrix B is an integer matrix that does not contain any
submatrix of odd order having row and column sums equal to two (ie, a cycle
without chords in the corresponding graph).

1 0 1
1 1 0
0 1 1


NO


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


OK


1 0 1
1 1 0
0 1 1
1 1 1


OK

Other insights:

constraint ordering (petal structure)
unique subsequence
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The remaining fraction must be given by variables that do not cover r1 and r2
simultaneously ∑

j∈J(r1,r2)

xj ≤ 0 0-branch∑
j∈J(r1,r2)

xj ≥ 1 1-branch

0-branch: constraints r1 and r2 must not be covered together

1-branch: constraints r1 and r2 must be covered together
In SPP can be imposed by forcing to zero all variables/duties in
complementary sets J(r̄1, r2), J(r1, r̄2) (r̄ ≡ constraint not covered)

In practice, select r1 and r2 such that
∑

j∈J(r1,r2) xj is maximized and descend
first in the 1-branches
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D.M. Ryan. The Solution of Massive Generalized Set Partitioning Problems in
Aircrew Rostering. The Journal of the Operational Research Society, Palgrave
Macmillan Journals on behalf of the Operational Research Society, 1992,
43(5), 459-467

D.M. Ryan and B.A. Foster. An integer programming approach to scheduling.
A. Wren (ed.). Computer Scheduling of Public Transport, North-Holland,
Amsterdam, 1981, 269-280

M. Pinedo, Planning and Scheduling in Manufacturing and Services. Springer
Verlag, 2005 (Sec. 12.6)
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Minimization problem  Lagrangian dual is a maximization problem
Subgradient γ = Ax ′ − b
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A CP approach

Hospital: head nurses on duty seven days a week 24 hours a day
Three 8 hours shifts per day (1: daytime, 2: evening, 3: night)
In a day each shift must be staffed by a different nurse
The schedule must be the same every week
Four nurses are available (A,B,C,D) and must work at least 5 days a
week.
No shift should be staffed by more than two different nurses during the
week
No employee is asked to work different shifts on two consecutive days
An employee that works shifts 2 and 3 must do so at least two days in a
row.
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Mainly a feasibility problem

A CP approach

Two solution representations

Sun Mon Tue Wed Thu Fri Sat
Shift 1 A B A A A A A
Shift 2 C C C B B B B
Shift 3 D D D D C C D

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3
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Variables: wsd nurse assigned to shift s on day d
and yid the shift assigned to nurse i on day d

wsd ∈ {A,B,C ,D} yid ∈ {0, 1, 2, 3}

Three different nurses are scheduled each day

alldiff(w·d) ∀d

Every nurse is assigned to at least 5 days of work

cardinality(w·· | (A,B,C ,D), (5, 5, 5, 5), (6, 6, 6, 6))

At most two nurses work any given shift

nvalues(ws· | 1, 2) ∀s

41



Workforce Scheduling
Shift Scheduling
Crew Scheduling
Nurse Scheduling

All shifts assigned for each day

alldiff(y·d) ∀d

Maximal sequence of consecutive variables that take the same values

stretch-cycle(yi· | (2, 3), (2, 2), (6, 6),P)

∀i , P = {(s, 0), (0, s) | s = 1, 2, 3}

Channeling constraints between the two representations:
on any day, the nurse assigned to the shift to which nurse i is assigned must
be nurse i (element constraint)

wyid ,d = i ∀i , d element(yid , (w0d , . . . ,w3d), zid)
ywsd ,d = s ∀s, d element(wsd , (yAd , . . . , yDd), zsd)

element(y , x , z): z be equal to the y th variable in the list (x1 . . . , xm)
42
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The complete CP model
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Constraint Propagation:

alldiff: matching

nvalues: max flow

stretch: poly-time dynamic programming

index expressions wyid d replaced by z and constraint:
element(y , x , z): z be equal to y -th variable in list x1, . . . , xm

Search:

branching by splitting domanins with more than one element

first fail branching

symmetry breaking:

employees are indistinguishable
shifts 2 and 3 are indistinguishable
days can be rotated

Eg: fix A,B,C to work 1, 2, 3 resp. on sunday
44
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Local search and metaheuristic methods are used if the problem has
large scale.

Procedures are very similar to what we saw for course timetabling.
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