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MILP ModelsProblem Definition

Vehicle Routing: distribution of goods between depots and customers.

Delivery, collection, transportation.

Examples: solid waste collection, street cleaning, school bus routing,
dial-a-ride systems, transportation of handicapped persons, routing of
salespeople and maintenance unit.

Vehicle Routing Problems

Input: Vehicles, depots, road network, costs and customers requirements.
Output: Set of routes such that:

requirement of customers are fulfilled,
operational constraints are satisfied and
a global transportation cost is minimized.
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Road Network

represented by a (directed or undirected) complete graph
travel costs and travel times on the arcs obtained by shortest paths

Customers
vertices of the graph
collection or delivery demands
time windows for service
service time
subset of vehicles that can serve them
priority (if not obligatory visit)
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Vehicles
capacity
types of goods
subsets of arcs traversable
fix costs associated to the use of a vehicle
distance dependent costs
a-priori partition of customers
home depot in multi-depot systems
drivers with union contracts

Operational Constraints

vehicle capacity
delivery or collection
time windows
working periods of the vehicle drivers
precedence constraints on the customers
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Objectives

minimization of global transportation cost (variable + fixed costs)
minimization of the number of vehicles
balancing of the routes
minimization of penalties for un-served customers

History:
Dantzig, Ramser “The truck dispatching problem”, Management Science,
1959
Clark, Wright, “Scheduling of vehicles from a central depot to a number of
delivery points”. Operation Research. 1964
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Capacitated (and Distance Constrained) VRP (CVRP and DCVRP)
VRP with Time Windows (VRPTW)
VRP with Backhauls (VRPB)
VRP with Pickup and Delivery (VRPPD)
Periodic VRP (PVRP)
Multiple Depot VRP (MDVRP)
Split Delivery VRP (SDVRP)
VRP with Satellite Facilities (VRPSF)
Site Dependent VRP
Open VRP
Stochastic VRP (SVRP)
...
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MILP ModelsCapacitated Vehicle Routing (CVRP)

Input: (common to all VRPs)

(di)graph (strongly connected, typically complete) G (V ,A), where
V = {0, . . . , n} is a vertex set:

0 is the depot.
V ′ = V \{0} is the set of n customers
A = {(i , j) : i , j ∈ V } is a set of arcs

C a matrix of non-negative costs or distances cij between customers i
and j (shortest path or Euclidean distance)
(cik + ckj ≥ cij ∀ i , j ∈ V )

a non-negative vector of costumer demands di

a set of K (identical!) vehicles with capacity Q, di ≤ Q
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Task:
Find collection of K circuits with minimum cost, defined as the sum of the
costs of the arcs of the circuits and such that:

each circuit visits the depot vertex

each customer vertex is visited by exactly one circuit; and

the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

Note: lower bound on K
dd(V ′)/Qe

number of bins in the associated Bin Packing Problem
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A feasible solution is composed of:

a partition R1, . . . ,Rm of V ;

a permutation πi of Ri
⋃
{0} specifying the order of the customers on

route i .

A route Ri is feasible if
∑πm

i=π1
di ≤ Q.

The cost of a given route (Ri ) is given by: F (Ri ) =
∑πi

m
j=πi

0
cj,j+1

The cost of the problem solution is: FVRP =
∑m

i=1 F (Ri ) .
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Relation with TSP

VRP with K = 1, no limits, no (any) depot, customers with no demand
Ü TSP

VRP is a generalization of the Traveling Salesman Problem (TSP) Ü is
NP-Hard.

VRP with a depot, K vehicles with no limits, customers with no demand
Ü Multiple TSP = one origin and K salesman

Multiple TSP is transformable in a TSP by adding K identical copies of
the origin and making costs between copies infinite.
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Variants of CVRP:
minimize number of vehicles

different vehicles Qk , k = 1, . . . ,K

Distance-Constrained VRP: length tij on arcs and total duration of a
route cannot exceed T associated with each vehicle
Generally cij = tij
(Service times si can be added to the travel times of the arcs:
t ′ij = tij + si/2 + sj/2)

Distance constrained CVRP
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Further Input:

each vertex is also associated with a time interval [ai , bj ].

each arc is associated with a travel time tij

each vertex is associated with a service time si

Task:
Find a collection of K simple circuits with minimum cost, such that:

each circuit visit the depot vertex

each customer vertex is visited by exactly one circuit; and

the sum of the demands of the vertices visited by a circuit does not
exceed the vehicle capacity Q.

for each customer i , the service starts within the time windows [ai , bi ] (it
is allowed to wait until ai if early arrive)
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Time windows induce an orientation of the routes.
18
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Variants

Minimize number of routes
Minimize hierarchical objective function
Makespan VRP with Time Windows (MPTW)

minimizing the completion time
Delivery Man Problem with Time Windows (DMPTW)

minimizing the sum of customers waiting times
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Integer Programming

Construction Heuristics

Local Search

Metaheuristics

Hybridization with Constraint Programming
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arc flow formulation

integer variables on the edges counting the number of time it is
traversed
one, two or three index variables

set partitioning formulation

multi-commodity network flow formulation for VRPTW

integer variables representing the flow of commodities along the
paths traveled by the vehicles and
integer variables representing times
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Two index arc flow formulation

min
∑
i∈V

∑
j∈V

cijxij (1)

s.t.
∑
i∈V

xij = 1 ∀j ∈ V \ {0} (2)

∑
j∈V

xij = 1 ∀i ∈ V \ {0} (3)

∑
i∈V

xi0 = K (4)

∑
j∈V

x0j = K (5)

∑
i∈S

∑
j 6∈S

xij ≥ r(S) ∀S ⊆ V \ {0}, S 6= ∅ (6)

xij ∈ {0, 1} ∀i , j ∈ V (7)

r(S) minimum number of vehicles needed to serve set S
(6): capacity-cut constraints
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One index arc flow formulation

min
∑
e∈E

cexe (8)

s.t.
∑

e∈δ(i)

xe = 2 ∀i ∈ V \ {0} (9)

∑
e∈δ(0)

xe = 2K (10)

∑
e∈δ(S)

xe ≥ 2r(S) ∀S ⊆ V \ {0}, S 6= ∅(11)

xe ∈ {0, 1} ∀e 6∈ δ(0)(12)
xe ∈ {0, 1, 2} ∀e ∈ δ(0)(13)

r(S) minimum number of vehicles needed to serve set S
xe = 2 if we allow single visit routes
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Three index arc flow formulation

min
∑
i∈V

∑
j∈V

cij

K∑
k=1

xijk (14)

s.t.
K∑

k=1

yik = 1 ∀i ∈ V \ {0} (15)

K∑
k=1

y0k = K (16)∑
j∈V

xijk =
∑
j∈V

xjik = yik ∀i ∈ V , k = 1, . . . ,K (17)

∑
i∈V

diyik ≤ C ∀k = 1, . . . ,K (18)

∑
i∈S

∑
j 6∈S

xijk ≥ yhk ∀S ⊆ V \ {0}, h ∈ S , k = 1, . . . ,K (19)

yik ∈ {0, 1} ∀i ∈ V , k = 1, . . . ,K (20)

xijk ∈ {0, 1} ∀i , j ∈ V , k = 1, . . . ,K (21)
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yij , yji two commodities and xij if arc is in solution

min
∑

(i,h)∈A′

cijxij (22)

s.t.
∑
j∈V ′

(yji − yij ) = 2di ∀i ∈ V \ {0, n + 1} (23)

∑
j∈V ′\{0,n+1}

y0j = d(V \ {0, n + 1} (24)

∑
j∈V ′\{0,n+1}

yj0 = KC − d(V \ {0, n + 1} (25)

∑
j∈V ′\{0,n+1}

yn+1,j = KC (26)

yij + yji = Cxij ∀ij ∈ A′ (27)∑
j∈V ′

(xij + xji ) = 2 ∀i ∈ V \ {0, n + 1} (28)

yij ≥ 0 ∀ij ∈ A′ (29)

xij ∈ {0, 1} ∀ij ∈ A′ (30)

26



Vehicle Routing
MILP ModelsSet Partitioning Formulation

R = {1, 2, . . . ,R} index set of routes

air =

{
1 if costumer i is served by r
0 otherwise

xr =

{
1 if route r is selected
0 otherwise

min
∑
r∈R

crxr (31)

s.t.
∑
r∈R

airxr = 1 ∀i ∈ V (32)∑
r∈R

xr ≤ K (33)

xr ∈ {0, 1} ∀r ∈ R (34)
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What can we do with these integer programs?

plug them into a commercial solver and try to solve them
preprocess them
determine lower bounds

solve the linear relaxation
combinatorial relaxations
relax some constraints and get an easy solvable problem
Lagrangian relaxation
polyhedral study to tighten the formulations

upper bounds via heuristics
branch and bound
cutting plane
branch and cut
Dantzig Wolfe decomposition
column generation (via reformulation)
branch and price
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Lower bounding via combinatorial relaxations

Relax: capacity cut constraints (CCC)
or generalized subtour elimination constraints (GSEC)

Consider both ACVRP and SCVRP

Relax CCC in 2-index formulation
obtain a transportation problem
Solution may contain isolated circuits and exceed vertex capacity

Relax CCC in 1-index formulation
obtain a b-matching problem

min
∑
e∈E

cexe

s.t.
∑

e∈δ(i)
xe = bi ∀i ∈ V , b0 = 2K , bi = 2 ∀i 6= 0

xe ∈ {0, 1} ∀e 6∈ δ(0)
xe ∈ {0, 1, 2} ∀e ∈ δ(0)

Solution has same problems as above
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relax in 2-index flow formulation:

min
∑
i∈V

∑
j∈V

cijxij

s.t.
∑
i∈V

xij = 1 ∀j ∈ V \ {0}

∑
j∈V

xij = 1 ∀i ∈ V \ {0}

∑
i∈V

xi0 = K

∑
j∈V

x0j = K

∑
i∈S

∑
i 6∈S

xij ≥ r(S)1 ∀S ⊆ V \ {0}, S 6= ∅

xij ∈ {0, 1} ∀i , j ∈ V

K-shortest spanning arborescence problem
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relax in 1-index formulation

min
∑
e∈E

cexe

s.t.
∑

e∈δ(i)

xe = 2 ∀i ∈ V \ {0}

∑
e∈δ(0)

xe = 2K

∑
e∈δ(S)

xe ≥ 2r(S) ∀S ⊆ V \ {0},S 6= ∅

xe ∈ {0, 1} ∀e 6∈ δ(0)

K-tree: min cost set of n + K edges spanning the graph with degree 2K
at the depot.

Lagrangian relaxation of the sub tour constraints iteratively added after
violation recognized by separation procedure.
Subgradient optimization for the multipliers. 31
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min
∑
e∈E

cexe (35)

s.t.
∑

e∈δ(i)
xe = 2 ∀i ∈ V \ {0} (36)

∑
e∈δ(0)

xe = 2K (37)

∑
e∈δ(S)

xe ≥ 2
⌈d(S)

C

⌉
∀S ⊆ V \ {0}, S 6= ∅ (38)

xe ∈ {0, 1} ∀e 6∈ δ(0) (39)

xe ∈ {0, 1, 2} ∀e ∈ δ(0) (40)
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Let LP(∞) be linear relaxation of IP (with all cuts)

zLP(∞) ≤ zIP

Problems if many constraints

Solve LP(h) instead and add constraints later (h cuts included)

If LP(h) has integer solution and no constraint unsatisfied then we are
done, that is optimal
If not, then zLP(h) ≤ zLP(h+1) ≤ zLP(∞) ≤ zIP

Crucial step: separation algorithm given a solution to LP(h) it tell us if
some constraints are violated.

If the procedure does not return an integer solution we proceed by branch
and bound
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Problems with B&C:

i) no good algorithm for the separation phase
it may be not exact in which case bounds relations still hold and we can
go on with branching

ii) number of iterations for cutting phase is too high

iii) program unsolvable because of size

iv) the tree explodes

The main problem is (iv).
Worth trying to strengthen the linear relaxation by inequalities that although
unnecessary in the integer formulation force the optimal solution of LP and
IP to get closer. è Polyhedral studies
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Solving the SCP integer program

Branch and bound

generate routes such that:
they are good in terms of cost
they reduce the potential for fractional solutions

constraint branching [Ryan, Foster, 1981]

∃ constraints r1, r2 : 0 <
∑

j∈J(r1,r2)

xj < 1

J(r1, r2) all columns covering r1, r2 simultaneously. Branch on:

/ \∑
j∈J(r1,r2)

xj ≤ 0
∑

j∈J(r1,r2)

xj ≥ 1
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Solving the SCP linear relaxation

Column Generation Algorithm

Step 1 Generate an initial set of columns R′

Step 2 Solve problem P ′ and get optimal primal variables, x̄ , and optimal
dual variables, (π̄, θ̄)

Step 3 Solve problem CG, or identify routes r ∈ R satisfying c̄r < 0
Step 4 For every r ∈ R with c̄r < 0 add the column r to R′ and go to Step 2
Step 5 If no routes r have c̄r < 0, i.e., c̄min ≥ 0 then stop.

In most of the cases we are left with a fractional solution
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Solving the SCP integer program:

cutting plane
branch and price

Cutting Plane Algorithm

Step 1 Generate an initial set R′ of columns
Step 2 Solve, using column generation, the problem P ′ (linear programming

relaxation of P)
Step 3 If the optimal solution to P ′ is integer stop.

Else, generate cutting plane separating this fractional solution.
Add these cutting planes to the linear program P ′

Step 4 Solve the linear program P ′. Goto Step 3.

Is the solution to this procedure overall optimal?
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Cuts

Intersection graph G = (V ,E ): V are the routes and E is made by links
between routes that have at least a customer in common
(Independence set in G is a collection of routes where each customer is
visited only once.)

Clique constraints ∑
r∈K

x̄r ≤ 1 ∀ cliques K of G

Cliques searched heuristically

Odd holes
Odd hole: odd cycle with no chord∑

r∈H

x̄r ≤
|H| − 1

2
∀ odd holes H

Generation via layered graphs
39
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
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1




x1
x2
x3
x4
x5
x6

 ≤

1
1
1
1
1


5 4

3

2

6

1

x ′ = [0; 0.5; 0.5; 0.5; 0.5] is an extreme point of the polytope and clique
constraints would not prevent it (although they define facets they do not
define all the facets). The constraint on the odd hole H = {2, 3, 4, 5, 6}:

x2 + x3 + x4 + x5 + x6 ≤ 2

cuts off solution x ′. (this is facet defining for H but not for G )

[Integer and Combinatorial Optimization,
G. Nemhauser and L. Wolsey, 1988, p261]
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Branch and price

it must be possible to incorporate information on the node in the column
generation procedure

easy to incorporate xr = 1, just omit nodes in Sr from generation; but
not clear how to impose xr = 0.

different branching: on the edges: xij = 1 then in column generation set
cij = −∞; if xij = 0 then cij =∞
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