DM204 - Spring 2011
Scheduling, Timetabling and Routing

Lecture 13
 Vehicle Routing Construction Heuristics

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Construction Heuristics for CVRP
2. Construction Heuristics for VRPTW

Course Overview

\checkmark Scheduling
\checkmark Classification
\checkmark Complexity issues
\checkmark Single Machine

- Parallel Machine
- Flow Shop and Job Shop
- Resource Constrained Project Scheduling Model
- Timetabling
\checkmark Crew/Vehicle Scheduling
- Public Transports
- Workforce scheduling
\checkmark Reservations
\checkmark Education
- Sport Timetabling
- Vechicle Routing
- MILP Approaches
- Construction Heuristics
- Local Search Algorithms

Outline

1. Construction Heuristics for CVRP
2. Construction Heuristics for VRPTW

Outline

1. Construction Heuristics for CVRP
2. Construction Heuristics for VRPTW

Construction Heuristics for CVRP

- TSP based heuristics
- Saving heuristics (Clarke and Wright)
- Insertion heuristics
- Cluster-first route-second
- Sweep algorithm
- Generalized assignment
- Location based heuristic
- Petal algorithm
- Route-first cluster-second

Cluster-first route-second seems to perform better than route-first (Note: distinction construction heuristic / iterative improvement is often blurred)

Construction heuristics for TSP
They can be used for route-first cluster-second or for growing multiple tours subject to capacity constraints.

- Heuristics that Grow Fragments
- Nearest neighborhood heuristics
- Double-Ended Nearest Neighbor heuristic
- Multiple Fragment heuristic (aka, greedy heuristic)
- Heuristics that Grow Tours
- Nearest Addition
- Farthest Addition
- Random Addition
- Clarke-Wright saving heuristic
- Heuristics based on Trees
- Minimum spanning tree heuristic
- Christofides' heuristics
(But recall! Concorde: http://www.tsp.gatech.edu/)

Fgure 1. The Nearest Neighbor heuristic.

NN (Flood, 1956)

1. Randomly select a starting node
2. Add to the last node the closest node until no more nodes are available
3. Connect the last node with the first node

Running time $O\left(N^{2}\right)$
[Bentley, 1992]

Rigure 5. The Multiple Fragment heuristic.

Add the cheapest edge provided it does not create a cycle.

Figure 8. The Nearest Addition heuristic.

NA

1. Select a node and its closest node and build a tour of two nodes
2. Insert in the tour the closest node v until no more node are available Running time $O\left(N^{3}\right)$

Figure 11. The Farthest Addition heuristic.

FA

1. Select a node and its farthest and build a tour of two nodes
2. Insert in the tour the farthest node v until no more node are available

FA is more effective than NA because the first few farthest points sketch a broad outline of the tour that is refined after.

Running time $O\left(N^{3}\right)$
[Bentley, 1992]

Figure 14. The Random Addition heuristic.

1. Find a minimum spanning tree $O\left(N^{2}\right)$
2. Append the nodes in the tour in a depth-first, inorder traversal

Running time $O\left(N^{2}\right)$

$$
A=M S T(I) / O P T(I) \leq 2
$$

Fgure 19. Christofides' heuristic.

1. Find the minimum spanning tree $\mathrm{T} . O\left(N^{2}\right)$
2. Find nodes in T with odd degree and find the cheapest perfect matching M in the complete graph consisting of these nodes only. Let G be the multigraph of all nodes and edges in T and $\mathrm{M} . O\left(N^{3}\right)$
3. Find an Eulerian walk (each node appears at least once and each edge exactly once) on G and an embedded tour. $O(N)$
Running time $O\left(N^{3}\right)$

$$
A=C H(I) / O P T(I) \leq 3 / 2
$$

Construction Heuristics Specific for VRP

Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)
Sequential:
2. consider in turn route $(0, i, \ldots, j, 0)$ determine $s_{k i}$ and $s_{j l}$
3. merge with $(k, 0)$ or $(0, /)$

Construction Heuristics Specific for VRP

Clarke-Wright Saving Heuristic (1964)

1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)
Parallel:
2. Calculate saving $s_{i j}=c_{0 i}+c_{0 j}-c_{i j}$ and order the saving in non-increasing order
3. scan $s_{i j}$
merge routes if i) i and j are not in the same tour ii) neither i and j are interior to an existing route iii) vehicle and time capacity are not exceeded

(Fiala 1978)

Matching Based Saving Heuristic

1. Start with an initial allocation of one vehicle to each customer (0 is the depot for VRP or any chosen city for TSP)
2. Compute $s_{p q}=t\left(S_{p}\right)+t\left(S_{q}\right)-t\left(S_{p} \cup S_{q}\right)$ where $t(\cdot)$ is the TSP solution
3. Solve a max weighted matching on the sets S_{k} with weights $s_{p q}$ on edges. A connection between a route p and q exists only if the merging is feasible.

Insertion Heuristic

$$
\begin{aligned}
& \alpha(i, k, j)=c_{i k}+c_{k j}-\lambda c_{i j} \\
& \beta(i, k, j)=\mu c_{0 k}-\alpha(i, k, j)
\end{aligned}
$$

1. construct emerging route $(0, k, 0)$
2. compute for all k unrouted the feasible insertion cost:

$$
\alpha^{*}\left(i_{k}, k, j_{k}\right)=\min _{p}\left\{\alpha\left(i_{p}, k, i_{p+1}\right)\right\}
$$

if no feasible insertion go to 1 otherwise choose k^{*} such that

$$
\beta^{*}\left(i_{k}^{*}, k^{*}, j_{k}^{*}\right)=\max _{k}\left\{\beta\left(i_{k}, k, j_{k}\right)\right\}
$$

Cluster-first route-second: Sweep algorithm [Wren \& Holliday (1971)]

1. Choose i^{*} and set $\theta\left(i^{*}\right)=0$ for the rotating ray
2. Compute and rank the polar coordinates (θ, ρ) of each point
3. Assign customers to vehicles until capacity not exceeded. If needed start a new route. Repeat until all customers scheduled.

Cluster-first route-second: Generalized-assignment-based algorithm [Fisher \& Jaikumur (1981)]

1. Choose a j_{k} at random for each route k
2. For each point compute

$$
d_{i k}=\min \left\{c_{0, i}+c_{i, j_{k}}+c_{j_{k}, 0}, c_{0 j_{k}}+c_{j_{k}, i}+c_{i, 0}\right\}-\left(c_{0, j_{k}}+c_{j_{k}, 0}\right)
$$

3. Solve GAP with $d_{i k}, Q$ and q_{i}

$$
\begin{aligned}
\min & \sum_{i} \sum_{j} d_{i j_{k}} x_{i j_{k}} \\
& \sum_{i} q_{i} x_{i j_{k}} \leq Q \\
& \sum_{j_{k}} x_{i j_{k}} \geq 1 \\
& x_{i j_{k}} \in\{0,1\}
\end{aligned}
$$

Cluster-first route-second: Location based heuristic [Bramel \& Simchi-Levi (1995)]

1. Determine seeds by solving a capacitated location problem (k-median)
2. Assign customers to closest seed
(better performance than insertion and saving heuristics)

Cluster-first route-second: Petal Algorithm

1. Construct a subset of feasible routes
2. Solve a set partitioning problem

Route-first cluster-second [Beasley, 1983]

1. Construct a TSP tour (giant tour) over all customers
2. Split the giant tour. Idea:

- Choose an arbitrary orientation of the TSP;
- Partition the tour according to capacity constraint;
- Repeat for several orientations and select the best

Alternatively: use the optimal split algorithm of next slide.
(not very competitive if alone but competitive if inside an Evolutionary Algorithm [Prins, 2004])

- From the TSP tour,

$$
\text { Assume } Q=10
$$

- construct an auxiliary graph $H=(X, A, Z)$.
$X=\{0, \ldots, n\}$,
$A=\{(i, j) \mid i<j$ trip visiting customers $i+1$ to j is feasible in terms of capacity\},
$z_{i j}=c_{0, i+1}+I_{i+1, j}+c_{0 j}$, where $I_{i+1, j}$ is the cost of traveling from $i+1$ to j in the TSP tour.

One arc $a b$ with weight 55 for the trip $(0, a, b, 0)$

- An optimal CVRP solution given the tour corresponds to a min-cost path from 0 to n in H. Computed in $O(n)$ since H is circuitless.
- The resulting CVRP solution with three routes

Exercise

Which heuristics can be used to minimize K and which ones need to have K fixed a priori?

Outline

1. Construction Heuristics for CVRP

2. Construction Heuristics for VRPTW

Construction Heuristics for VRPTW

Extensions of those for CVRP [Solomon (1987)]

- Saving heuristics (Clarke and Wright)
- Time-oriented nearest neighbors
- Insertion heuristics
- Time-oriented sweep heuristic
b_{i} time of beginning of service
s_{i} units of time for service
[e_{i}, l_{j}] earliest and latest time custumer i will permit the beginning of the service
if a vehicle arrives earlier it has to wait, that is, $b_{j}=\max \left\{e_{j}, b_{i}+s_{i}+t_{i j}\right\}$
\rightsquigarrow with fixed num of vehicels it is NP-complete to decide whether a feasible solution exists [Savelsbergh 1985]

Time-Oriented Nearest-Neighbor

- Add the unrouted node "closest" to the depot or the last node added without violating feasibility
- Metric for "closest":
$d_{i j}$ geographical distance
$T_{i j}$ time distance

$$
c_{i j}=\delta_{1} d_{i j}+\delta_{2} T_{i j}+\delta_{3} v_{i j}
$$

$$
v_{i j} \text { urgency to serve } j
$$

$$
\begin{aligned}
& T_{i j}=b_{j}-\left(b_{i}+s_{i}\right) \\
& v_{i j}=l_{j}-\left(b_{i}+s_{i}+t_{i j}\right)
\end{aligned}
$$

Insertion Heuristics
Step 1: Compute for each unrouted costumer u the best feasible position in the route:

$$
c_{1}(i(u), u, j(u))=\min _{p=1, \ldots, m}\left\{c_{1}\left(i_{p-1}, u, i_{p}\right)\right\}
$$

(c_{1} is a composition of increased time and increase route length due to the insertion of u)
(see next slide for efficiency issues)
Step 2: Compute the best customer u^{*} to be inserted among unrouted customers u that can be feasibly inserted:

$$
c_{2}\left(i\left(u^{*}\right), u^{*}, j\left(u^{*}\right)\right)=\operatorname{opt}\left\{c_{2}(i(u), u, j(u))\right\}
$$

(max the benefit of servicing a node on a partial route rather than on a direct route)

Step 3: Insert the customer u^{*} from Step 2

$$
\begin{aligned}
& \text { I1 } \left.c_{1}(i, u, j)=\alpha_{1} c_{11}(i, u, j)+\alpha_{2} c_{12}(i, u, j)\right), \alpha_{1}+\alpha_{2}=1, \alpha_{1} \geq 0, \alpha_{2} \geq 0 \\
& \quad c_{11}(i, u, j)=d_{i u}+d_{u j}-\mu d_{i j}, \quad \mu \geq 0 \\
& c_{12}(i, u, j)=b_{j_{u}}-b_{j}, \quad b_{j_{u}} \text { new starting time after insertion } u \\
& c_{2}(i, u, j)=\lambda d_{0 u}-c_{1}(i, u, j), \quad \lambda \geq 0
\end{aligned}
$$

I2 $c_{1}(i, u, j)$ as for I1
$c_{2}(i, u, j)=\beta_{1} R_{d}(u)+\beta_{r}\left(R_{t}(u)\right), \quad \beta_{1}+\beta_{2}=1, \beta_{1} \geq 0, \beta_{2} \geq 0$
R_{d} total route distance
R_{t} total route time

$$
\begin{gathered}
\text { I3 } c_{1}(i, u, j)=\text { as for } 11+\alpha_{3} c_{13}(i, u, j) \\
c_{13}(i, u, j)=I_{u}-b_{u}, \text { urgency } \\
c_{2}(i, u, j)=c_{1}(i, u, j)
\end{gathered}
$$

I1 typically used. Parameters: $\mu=1, \alpha_{1}=1, \alpha_{2}=0, \lambda=\{1,2\}$
initialization: farthest unrouted or unrouted with earliest deadline

Time Oriented Sweep Heuristic

- assign customers to vehicles as in orginal sweep heuristic
- use insertion I1 as tour building heuristic in each sector
- due to time windows some customers may stay unscheduled, repeat the process only for those customers choosing as seed the clostest customer to the bisecting ray of a previous sector

Efficiency issues
 Push forward

- Let's assume waiting is allowed and s_{i} indicates service times
- $\left[e_{i}, l_{i}\right]$ time window, w_{i} waiting time
- $b_{i}=\max \left\{e_{i}, b_{j}+s_{j}+t_{j i}\right\}$ begin of service
- insertion of $u:\left(i_{0}, i_{1}, \ldots, i_{p}, \mathbf{u}, i_{p+1}, \ldots, i_{m}\right)$
- $P F_{i_{p+1}}=b_{i_{p+1}}^{\text {new }}-b_{i_{p+1}} \geq 0 \quad$ push forward
- $P F_{i_{r+1}}=\max \left\{0, P F_{i_{r}}-w_{i_{r+1}}\right\}, \quad p \leq r \leq m-1$

Theorem

The insertion is feasible if and only if:

$$
b_{u} \leq I_{u} \quad \text { and } \quad P F_{i_{r}}+b_{i_{r}} \leq I_{i_{r}} \quad \forall p<r \leq m
$$

Check vertices $k, u \leq k \leq m$ sequentially.

- if $b_{k}+P F_{k}>I_{k}$ then stop: the insertion is infeasible
- if $P F_{k}=0$ then stop: the insertion is feasible

