
DM204 – Autumn 2013

Scheduling, Timetabling and Routing

Flow Shop and Job Shop

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Dynamic Programming

2. Parallel Machine Models
CPM/PERT

3. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

4. Job Shop
Modelling
Exact Methods
Shifting Bottleneck Heuristic
Local Search Methods

5. Job Shop Generalizations

2

Course Overview

4 Scheduling
4 Classification
4 Complexity issues
4 Single Machine
4 Parallel Machine

Flow Shop and Job Shop
Resource Constrained Project
Scheduling Model

Timetabling
Sport Timetabling
Reservations and Education
University Timetabling
Crew Scheduling
Public Transports

Vechicle Routing
Capacited Models
Time Windows models
Rich Models

3

Outline

1. Dynamic Programming

2. Parallel Machine Models
CPM/PERT

3. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

4. Job Shop
Modelling
Exact Methods
Shifting Bottleneck Heuristic
Local Search Methods

5. Job Shop Generalizations

4

1 | |
∑

hj(Cj)1 | |
∑

hj(Cj)1 | |
∑

hj(Cj)

A lot of work done on 1 | |
∑

wjTj
[single-machine total weighted tardiness]

1 | |
∑

Tj is hard in ordinary sense, hence admits a pseudo polynomial
algorithm (dynamic programming in O(n4∑ pj))

1 | |
∑

wjTj strongly NP-hard (reduction from 3-partition)

5

1 | |
∑

hj(Cj)1 | |
∑

hj(Cj)1 | |
∑

hj(Cj)

generalization of
∑

wjTj hence strongly NP-hard

(forward) dynamic programming algorithm O(2n)

J set of jobs already scheduled;

V (J) =
∑

j∈J hj(Cj)

Step 1: Set J = ∅, V (j) = hj(pj), j = 1, . . . , n

Step 2: V (J) = minj∈J
(
V (J − {j}) + hj

(∑
k∈J pk

))
Step 3: If J = {1, 2, . . . , n} then V ({1, 2, . . . , n}) is optimum,

otherwise go to Step 2.

6

Outline

1. Dynamic Programming

2. Parallel Machine Models
CPM/PERT

3. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

4. Job Shop
Modelling
Exact Methods
Shifting Bottleneck Heuristic
Local Search Methods

5. Job Shop Generalizations

8

Pm | | CmaxPm | | CmaxPm | | Cmax
(without preemption)

P∞ | prec | Cmax CPM

Pm | | Cmax LPT heuristic, approximation ratio: 4
3 −

1
3m

Pm | prec | Cmax strongly NP-hard, LNS heuristic (non optimal)

Pm | pj = 1,Mj | Cmax LFJ-LFM (optimal if Mj are nested)

9

Project Planning

11

Project Planning

11

Project Planning

11

Project Planning

11

Outline

1. Dynamic Programming

2. Parallel Machine Models
CPM/PERT

3. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

4. Job Shop
Modelling
Exact Methods
Shifting Bottleneck Heuristic
Local Search Methods

5. Job Shop Generalizations

12

Flow Shop

General Shop Scheduling:

J = {1, . . . ,N} set of jobs; M = {1, 2, . . . ,m} set of machines

Jj = {Oij | i = 1, . . . , nj} set of operations for each job

pij processing times of operations Oij

µij ⊆ M machine eligibilities for each operation

precedence constraints among the operations

one job processed per machine at a time,
one machine processing each job at a time

Cj completion time of job j

è Find feasible schedule that minimize some regular function of Cj

Flow Shop Scheduling:

µij = i , i = 1, 2, . . . ,m

precedence constraints: Oij → Oi+1,j , i = 1, 2, . . . , n for all jobs

14

Example

schedule representation
π1, π2, π3, π4:
π1 : O11,O12,O13,O14
π2 : O21,O22,O23,O24
π3 : O31,O32,O33,O34
π4 : O41,O42,O43,O44

Gantt chart

we assume unlimited buffer

if same job sequence on each machine è permutation flow shop

15

Directed Graph Representation

Given a sequence: operation-on-node network,
jobs on columns, and machines on rows

17

Directed Graph Representation

Recursion for Cmax

Ci,π(1) =
i∑

l=1

pl,π(1)

C1,π(j) =

j∑
l=1

pl,π(l)

Ci,π(j) = max{Ci−1,π(j),Ci,π(j−1)}+ pi,π(j)

Computation cost?

18

Example

Cmax = 34

corresponds to longest path

19

Fm | |Cmax

Theorem
There always exist an optimum sequence without change in the first two and
last two machines.

Proof: By contradiction.

Corollary

F2 | | Cmax and F3 | | Cmax are permutation flow shop

Note: F3 | | Cmax is strongly NP-hard

21

F2 | |Cmax

Intuition: give something short to process to 1 such that 2 becomes
operative and give something long to process to 2 such that its buffer has
time to fill.

Construct a sequence T : T (1), . . . ,T (n) to process in the same order on
both machines by concatenating two sequences:
a left sequence L : L(1), . . . , L(t), and a right sequence
R : R(t + 1), . . . ,R(n), that is, T = L ◦ R

[Selmer Johnson, 1954, Naval Research Logistic Quarterly]

Let J be the set of jobs to process
Let T , L,R = ∅

Step 1 Find (i∗, j∗) such that pi∗,j∗ = min{pij | i ∈ 1, 2, j ∈ J}
Step 2 If i∗ = 1 then L = L ◦ {i∗}

else if i∗ = 2 then R = {i∗} ◦ R
Step 3 J := J \ {j∗}
Step 4 If J 6= ∅ go to Step 1 else T = L ◦ R

22

Theorem

The sequence T : T (1), , . . . ,T (n) is optimal.

Proof

Assume at one iteration of the algorithm that job k has the min
processing time on machine 1. Show that in this case job k has to go
first on machine 1 than any other job selected later.

By contradiction, show that if in a schedule S a job j precedes k on
machine 1 and has larger processing time on 1, then S is a worse
schedule than S ′.
There are three cases to consider.

Iterate the proof for all jobs in L.

Prove symmetrically for all jobs in R.

23

Construction Heuristics (1)
Fm | prmu |Cmax

Slope heuristic

schedule in decreasing order of Aj = −
∑m

i=1(m − (2i − 1))pij

Campbell, Dudek and Smith’s heuristic (1970)

extension of Johnson’s rule to when permutation is not dominant
recursively create 2 machines 1 and m − 1

p′ij =
i∑

k=1

pkj p′′ij =
m∑

k=m−i+1

pkj

and use Johnson’s rule

repeat for all m − 1 possible pairings

return the best for the overall m machine problem

26

Construction Heuristics (2)
Fm | prmu |Cmax

Nawasz, Enscore, Ham’s heuristic (1983)

Step 1: sort in decreasing order of
∑m

i=1 pij

Step 2: schedule the first 2 jobs at best

Step 3: insert all others in best position

Implementation in O(n2m)

[Framinan, Gupta, Leisten (2004)] examined 177 different arrangements of jobs
in Step 1 and concluded that the NEH arrangement is the best one for Cmax .

27

Iterated Greedy
Fm | prmu |Cmax

Iterated Greedy [Ruiz, Stützle, 2007]

Destruction: remove d jobs at random

Construction: reinsert them with NEH heuristic in the order of removal

Local Search: insertion neighborhood
(first improvement, whole evaluation O(n2m))

Acceptance Criterion: random walk, best, SA-like

Performance on up to n = 500×m = 20 :
NEH average gap 3.35% in less than 1 sec.

IG average gap 0.44% in about 360 sec.

29

Efficient local search for Fm |prmu |Cmax

Tabu search (TS) with insert neighborhood.

TS uses best strategy. è need to search efficiently!

Neighborhood pruning [Novicki, Smutnicki, 1994, Grabowski, Wodecki, 2004]

A sequence t = (t1, t2, . . . , tm−1) defines a
path in π:

Cmax expression through critical path:

31

critical path: ~u = (u1, u2, . . . , um) : Cmax(π) = C (π, u)

Block Bk and Internal Block B Int
k

Theorem (Werner, 1992)

Let π, π′ ∈ Π, if π′ has been obtained from π by a job insert so that
Cmax(π′) < Cmax(π) then in π′:
a) at least one job j ∈ Bk precedes job π(uk−1), k = 1, . . . ,m, or

b) at least one job j ∈ Bk succeeds job π(uk), k = 1, . . . ,m

32

Corollary (Elimination Criterion)

If π′ is obtained by π by an “internal block insertion” then
Cmax(π′) ≥ Cmax(π).

Hence we can restrict the search to where the good moves can be:

33

Further speedup: Use of lower bounds in delta evaluations:
Let δrx,uk

indicate insertion of x after uk (move of type ZRk(π))

∆(δrx,uk
) =

{
pπ(x),k+1 − pπ(uk),k+1 x 6= uk−1

pπ(x),k+1 − pπ(uk),k+1 + pπ(uk−1+1),k−1 − pπ(x),k−1 x = uk−1

That is, add and remove from the adjacent blocks
It can be shown that:

Cmax(δrx,uk
(π)) ≥ Cmax(π) + ∆(δrx,uk

)

Theorem (Nowicki and Smutnicki, 1996, EJOR)

The neighborhood thus defined is connected.

34

Metaheuristic details:

Prohibition criterion:
an insertion δx,uk is tabu if it restores the relative order of π(x) and π(x + 1).

Tabu length: TL = 6 +
[n

10m

]
Perturbation

perform all inserts among all the blocks that have ∆ < 0
activated after MaxIdleIter idle iterations

35

Tabu Search: the final algorithm:

Initialization : π = π0, C∗ = Cmax(π), set iteration counter to zero.
Searching : Create URk and ULk (set of non tabu moves)
Selection : Find the best move according to lower bound ∆.

Apply move. Compute true Cmax(δ(π)).
If improving compare with C∗ and in case update.
Else increase number of idle iterations.

Perturbation : Apply perturbation if MaxIdleIter done.
Stop criterion : Exit if MaxIter iterations are done.

36

Outline

1. Dynamic Programming

2. Parallel Machine Models
CPM/PERT

3. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

4. Job Shop
Modelling
Exact Methods
Shifting Bottleneck Heuristic
Local Search Methods

5. Job Shop Generalizations

37

Job Shop
General Shop Scheduling:

J = {1, . . . ,N} set of jobs; M = {1, 2, . . . ,m} set of machines

Jj = {Oij | i = 1, . . . , nj} set of operations for each job

pij processing times of operations Oij

µij ⊆ M machine eligibilities for each operation

precedence constraints among the operations

one job processed per machine at a time,
one machine processing each job at a time

Cj completion time of job j

è Find feasible schedule that minimize some regular function of Cj

Job shop

µij = l , l = 1, . . . , nj and µij 6= µi+1,j (one machine per operation)

O1j → O2j → . . .→ Onj ,j precedences (without loss of generality)

without repetition and with unlimited buffers
39

Task:

Find a schedule S = (Sij), indicating the starting times of Oij ,
such that:

it is feasible, that is,
Sij + pij ≤ Si+1,j for all Oij → Oi+1,j

Sij + pij ≤ Suv or Suv + puv ≤ Sij for all operations with µij = µuv .

and has minimum makespan: min{maxj∈J(Snj ,j + pnj ,j)}.

A schedule can also be represented by an m-tuple π = (π1, π2, . . . , πm) where
πi defines the processing order on machine i .

There is always an optimal schedule that is semi-active.

(semi-active schedule: for each machine, start each operation at the earliest
feasible time.)

40

Often simplified notation: N = {1, . . . , n} denotes the set of operations

41

Disjunctive graph representation: G = (N,A,E)

vertices N: operations with two dummy operations 0 and n + 1 denoting
“start” and “finish”.

directed arcs A, conjunctions

undirected arcs E , disjunctions

length of (i , j) in A is pi

42

A complete selection corresponds to choosing one direction for each arc
of E .

A complete selection that makes D acyclic corresponds to a feasible
schedule and is called consistent.

Complete, consistent selection ⇔ semi-active schedule (feasible earliest
start schedule).

Length of longest path 0–(n + 1) in D corresponds to the makespan

43

Longest path computation

In an acyclic digraph:

construct topological ordering (i < j for all i → j ∈ A)

recursion:

r0 = 0
rl = max

{j | j→l∈A}
{rj + pj} for l = 1, . . . , n + 1

44

A block is a maximal sequence of adjacent critical operations processed
on the same machine.

In the Fig. below: B1 = {4, 1, 8} and B2 = {9, 3}

Any operation, u, has two immediate predecessors and successors:
its job predecessor JP(u) and successor JS(u)

its machine predecessor MP(u) and successor MS(u)

45

Exact methods

Disjunctive programming

min Cmax
s.t. xij + pij ≤ Cmax ∀ Oij ∈ N

xij + pij ≤ xlj ∀ (Oij ,Olj) ∈ A
xij + pij ≤ xik ∨ xij + pij ≤ xik ∀ (Oij ,Oik) ∈ E
xij ≤ 0 ∀ i = 1, . . . ,m j = 1, . . . ,N

Constraint Programming

Branch and Bound [Carlier and Pinson, 1983]

Typically unable to schedule optimally more than 10 jobs on 10 machines.
Best result is around 250 operations.

48

Branch and Bound [Carlier and Pinson, 1983] [B1, p. 179]

Let Ω contain the first operation of each job;
Let rij = 0 for all Oij ∈ Ω

Machine Selection Compute for the current partial schedule

t(Ω) = min
ij∈Ω
{rij + pij}

and let i∗ denote the machine on which the minimum is achieved
Branching Let Ω′ denote the set of all operations Oi∗j on machine i∗ such

that
ri∗j < t(Ω) (i.e. eliminate ri∗j ≥ t(Ω))

For each operation in Ω′, consider an (extended)partial schedule with
that operation as the next one on machine i∗.
For each such (extended) partial schedule, delete the operations from Ω,
include its immediate follower in Ω and return to Machine Selection.

49

Lower Bounding:

longest path in partially selected disjunctive digraph

solve 1|rij |Lmax on each machine i like if all other machines could process
at the same time (see later shifting bottleneck heuristic) + longest path.

50

Shifting Bottleneck Heuristic

A complete selection is made by the union of selections Sk for each
clique Ek that corresponds to machines.

Idea: use a priority rule for ordering the machines.
choose each time the bottleneck machine and schedule jobs on that
machine.

Measure bottleneck quality of a machine k by finding optimal schedule
to a certain single machine problem.

Critical machine, if at least one of its arcs is on the critical path.

52

– M0 ⊂ M set of machines already sequenced.

– k ∈ M \M0

– P(k,M0) is problem 1 | rj | Lmax obtained by:

the selections in M0

deleting each disjunctive arc in p ∈ M \M0, p 6= k

– v(k,M0) is the optimum of P(k,M0)

– bottleneck m = arg max
k∈M\M0

{v(k,M0)}

– M0 = ∅
Step 1: Identify bottleneck m among k ∈ M \M0 and sequence it optimally.

Set M0 ← M0 ∪ {m}
Step 2: Reoptimize the sequence of each critical machine k ∈ M0 in turn: set

M ′o = M0 − {k} and solve P(k,M ′0).
Stop if M0 = M otherwise Step 1.

– Local Reoptimization Procedure

53

Construction of P(k,M0)

1 | rj | Lmax :
rj = L(0, j)

dj = L(0, n)− L(j , n) + pj

L(i , j) length of longest path in G : Computable in O(n)

acyclic complete directed graph ⇐⇒ transitive closure of its unique directed
Hamiltonian path.

Hence, only predecessors and successor are to be checked.
The graph is not constructed explicitly, but by maintaining a list of jobs per
machines and a list machines per jobs.

1 | rj | Lmax can be solved optimally very efficiently.
Results reported up to 1000 jobs.

54

1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax From one of the past lectures

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is optimal

55

Efficient local search for job shop

Solution representation:
m-tuple π = (π1, π2, . . . , πm) ⇐⇒ oriented digraph Dπ = (N,A,Eπ)

Neighborhoods
Change the orientation of certain disjunctive arcs of the current complete
selection

Issues:

1. Can it be decided easily if the new digraph Dπ′ is acyclic?

2. Can the neighborhood selection S ′ improve the makespan?

3. Is the neighborhood connected?

57

Swap Neighborhood [Novicki, Smutnicki]
Reverse one oriented disjunctive arc (i , j) on some critical path.

Theorem
All neighbors are consistent selections.

Note: If the neighborhood is empty then there are no disjunctive arcs,
nothing can be improved and the schedule is already optimal.

Theorem
The swap neighborhood is weakly optimal connected.

58

Insertion Neighborhood [Balas, Vazacopoulos, 1998]

For some nodes u, v in the critical path:
move u right after v (forward insert)

move v right before u (backward insert)

Theorem: If a critical path containing u and v also contains JS(v) and

L(v , n) ≥ L(JS(u), n)

then a forward insert of u after v yields an acyclic complete selection.

Theorem: If a critical path containing u and v also contains JS(v) and

L(0, u) + pu ≥ L(0, JP(v)) + pJP(v)

then a backward insert of v before v yields an acyclic complete selection.

59

60

Theorem: (Elimination criterion) If Cmax(S ′) < Cmax(S) then at least one
operation of a machine block B on the critical path has to be processed
before the first or after the last operation of B.

Swap neighborhood can be restricted to first and last operations in the
block

Insert neighborhood can be restricted to moves similar to those saw for
the flow shop. [Grabowski, Wodecki]

61

Tabu Search requires a best improvement strategy hence the neighborhood
must be search very fast.

Neighbor evaluation:

exact recomputation of the makespan O(n)

approximate evaluation (rather involved procedure but much faster and
effective in practice)

The implementation of Tabu Search follows the one saw for flow shop.

62

Outline

1. Dynamic Programming

2. Parallel Machine Models
CPM/PERT

3. Flow Shop
Introduction
Makespan calculation
Johnson’s algorithm
Construction heuristics
Iterated Greedy
Efficient Local Search and Tabu Search

4. Job Shop
Modelling
Exact Methods
Shifting Bottleneck Heuristic
Local Search Methods

5. Job Shop Generalizations

63

Generalizations: Time Lags

j

i
d i j

d

i

j
i j

−

Generalized time constraints

They can be used to model:

Release time:

S0 + ri ≤ Si ⇐⇒ d0i = ri

Deadlines:

Si + pi − di ≤ S0 ⇐⇒ di0 = pi − di

64

Modelling

min Cmax
s.t. xij + dij ≤ Cmax ∀ Oij ∈ N

xij + dij ≤ xlj ∀ (Oij ,Olj) ∈ A
xij + dij ≤ xik ∨ xij + dij ≤ xik ∀ (Oij ,Oik) ∈ E
xij ≥ 0 ∀ i = 1, . . . ,m j = 1, . . . ,N

In the disjunctive graph, dij become the lengths of arcs

65

Exact relative timing (perishability constraints):
if operation j must start lij after operation i :

Si + pi + lij ≤ Sj and Sj − (pi + lij) ≤ Si

(lij = 0 if no-wait constraint)

66

Set up times:

Si + pi + sij ≤ Sj or Sj + pj + sji ≤ Si

Machine unavailabilities:
Machine Mk unavailable in [a1, b1], [a2, b2], . . . , [av , bv]
Introduce v artificial operations λ = 1, . . . , v with µλ = Mk and:
pλ = bλ − aλ
rλ = aλ
dλ = bλ

Minimum lateness objectives:

Lmax =
N

max
j=1
{Cj − dj} ⇐⇒ dnj ,n+1 = pnj − dj

67

Blocking
Arises with limited buffers:
after processing, a job remains on the machine until the next machine is freed

Needed a generalization of the disjunctive graph model
=⇒ Alternative graph model G = (N,E ,A) [Mascis, Pacciarelli, 2002]

1. two non-blocking operations to be processed on the same machine

Si + pi ≤ Sj or Sj + pj ≤ Si

2. Two blocking operations i , j to be processed on
the same machine µ(i) = µ(j)

Sσ(j) ≤ Si or Sσ(i) ≤ Sj

3. i is blocking, j is non-blocking (ideal) and i , j to
be processed on the same machine µ(i) = µ(j).

Si + pi ≤ Sj or Sσ(j) ≤ Si
68

Example

O0,O1, . . . ,O13

M(O1) = M(O5) = M(O9)
M(O2) = M(O6) = M(O10)
M(O3) = M(O7) = M(O11)

Length of arcs can be negative
Multiple occurrences possible: ((i , j), (u, v)) ∈ A and ((i , j), (h, k)) ∈ A
The last operation of a job j is always non-blocking.

69

A complete selection S is consistent if it chooses alternatives from each
pair such that the resulting graph does not contain positive cycles.

Example:

pa = 4

pb = 2

pc = 1

b must start at least 9 days after a has started

c must start at least 8 days after b is finished

c must finish within 16 days after a has started

Sa + 9 ≤ Sb
Sb + 10 ≤ Sc
Sc − 15 ≤ Sa

This leads to an absurd.
In the alternative graph the cycle is positive.

71

The Makespan still corresponds to the longest path in the graph with
the arc selection G (S).

Problem: now the digraph may contain cycles. Longest path with simple
cyclic paths is NP-complete. However, here we have to care only of
non-positive cycles.

If there are no cycles of length strictly positive it can still be computed
efficiently in O(|N||E ∪ A|) by Bellman-Ford (1958) algorithm.

The algorithm iteratively considers all edges in a certain order and
updates an array of longest path lengths for each vertex. It stops if a
loop over all edges does not yield any update or after |N| iterations over
all edges (in which case we know there is a positive cycle).

Possible to maintain incremental updates when changing the selection
[Demetrescu, Frangioni, Marchetti-Spaccamela, Nanni, 2000].

72

Heuristic Methods

The search space is highly constrained + detecting positive cycles is
costly

Hence local search methods not very successful

Rely on the construction paradigm

Rollout algorithm [Meloni, Pacciarelli, Pranzo, 2004]

73

Rollout

Master process: grows a partial selection Sk :
decides the next element to fix based on an heuristic function
(selects the one with minimal value)

Slave process: evaluates heuristically the alternative choices.
Completes the selection by keeping fixed what passed by the master
process and fixing one alternative at a time.

74

Slave heuristics
Avoid Maximum Current Completion time
find an arc (h, k) that if selected would increase most the length of the
longest path in G(Sk) and select its alternative

max
(uv)∈A

{l(0, u) + auv + l(v , n)}

Select Most Critical Pair
find the pair that, in the worst case, would increase least the length of
the longest path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

min{l(0, u) + ahk + l(k, n), l(0, i) + aij + l(j , n)}

Select Max Sum Pair
find the pair with greatest potential effect on the length of the longest
path in G(Sk) and select the best alternative

max
((ij),(hk))∈A

|l(0, u) + ahk + l(k, n) + l(0, i) + aij + l(j , n)|

Trade off quality vs keeping feasibility
Results depend on the characteristics of the instance.

75

Implementation details of the slave heuristics

Once an arc is added we need to update all L(0, u) and L(u, n).
Backward and forward visit O(|F |+ |A|)

When adding arc aij , we detect positive cycles if L(i , j) + aij > 0. This
happens only if we updated L(0, i) or L(j , n) in the previous point and
hence it comes for free.

Overall complexity O(|A|(|F |+ |A|))

Speed up of Rollout:

Stop if partial solution overtakes upper bound

limit evaluation to say 20% of arcs in A

76

	Dynamic Programming
	Parallel Machine Models
	CPM/PERT

	Flow Shop
	Introduction
	Makespan calculation
	Johnson's algorithm
	Construction heuristics
	Iterated Greedy
	Efficient Local Search and Tabu Search

	Job Shop
	Modelling
	Exact Methods
	Shifting Bottleneck Heuristic
	Local Search Methods

	Job Shop Generalizations

