DM204 – Spring 2011 Scheduling, Timetabling and Routing

Lecture 3 RCPSP Single Machine Problems

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

RCPSP Dispatching Rules Single Machine Models

1. Resource Constrained Project Scheduling Model

2. Dispatching Rules

3. Single Machine Models

Outline

1. Resource Constrained Project Scheduling Model

2. Dispatching Rules

3. Single Machine Models

RCPSP

Resource Constrained Project Scheduling Model

RCPSP Dispatching Rules Single Machine Models

Given:

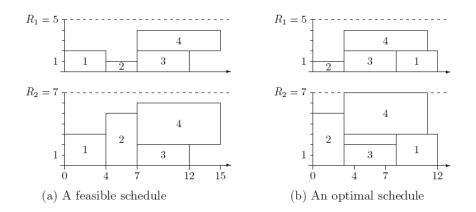
- activities (jobs) $j = 1, \ldots, n$
- renewable resources $i = 1, \ldots, m$
- amount of resources available R_i
- processing times p_j
- amount of resource used r_{ij}
- precedence constraints $j \rightarrow k$

Further generalizations

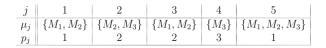
- Time dependent resource profile $R_i(t)$ given by (t_i^{μ}, R_i^{μ}) where $0 = t_i^1 < t_i^2 < \ldots < t_i^{m_i} = T$ Disjunctive resource, if $R_k(t) = \{0, 1\}$; cumulative resource, otherwise
- Multiple modes for an activity *j* processing time and use of resource depends on its mode *m*: *p_{jm}*, *r_{jkm}*.

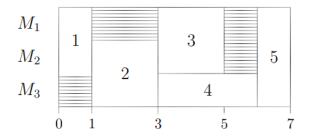
An Example

RCPSP Dispatching Rules Single Machine Models



Multi-processor Task Scheduling





Equivalent to a RCPSP with r = m and $R_k = 1$ for k = 1..m

Modeling

- A contractor has to complete *n* activities.
- The duration of activity *j* is *p_j*
- each activity requires a crew of size W_j .
- The activities are not subject to precedence constraints.
- The contractor has *W* workers at his disposal
- his objective is to complete all *n* activities in minimum time.

- Exams in a college may have different duration.
- The exams have to be held in a gym with W seats.
- The enrollment in course j is W_j and
- all W_i students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all *n* exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam.

- In a basic high-school timetabling problem we are given m classes c_1, \ldots, c_m ,
- h teachers a_1, \ldots, a_h and
- T teaching periods t_1, \ldots, t_T .
- Furthermore, we have lectures $i = l_1, \ldots, l_n$.
- Associated with each lecture is a unique teacher and a unique class.
- A teacher a_i may be available only in certain teaching periods.
- The corresponding timetabling problem is to assign the lectures to the teaching periods such that
 - each class has at most one lecture in any time period
 - each teacher has at most one lecture in any time period,
 - each teacher has only to teach in time periods where he is available.

- A set of jobs J_1, \ldots, J_g are to be processed by auditors A_1, \ldots, A_m .
- Job J_l consists of n_l tasks (l = 1, ..., g).
- There are precedence constraints $i_1 \rightarrow i_2$ between tasks i_1, i_2 of the same job.
- Each job J_l has a release time r_l , a due date d_l and a weight w_l .
- Each task must be processed by exactly one auditor. If task *i* is processed by auditor A_k , then its processing time is p_{ik} .
- Auditor A_k is available during disjoint time intervals $[s_k^{\nu}, l_k^{\nu}]$ ($\nu = 1, ..., m$) with $l_k^{\nu} < s_k^{\nu}$ for $\nu = 1, ..., m_k 1$.
- Furthermore, the total working time of A_k is bounded from below by H_k^- and from above by H_k^+ with $H_k^- \leq H_k^+$ (k = 1, ..., m).
- We have to find an assignment $\alpha(i)$ for each task $i = 1, ..., n := \sum_{l=1}^{g} n_l$ to an auditor $A_{\alpha(i)}$ such that
 - each task is processed without preemption in a time window of the assigned auditor
 - the total workload of A_k is bounded by H_k^- and H_k^k for k = 1, ..., m.
 - the precedence constraints are satisfied,
 - all tasks of J_l do not start before time r_l , and
 - the total weighted tardiness $\sum_{l=1}^{g} w_l T_l$ is minimized.

Course Overview

Scheduling

- Classification
- RCPSP
- Complexity issues
 - Single Machine
 - Parallel Machine and Flow Shop Models
 - Job Shop
 - Resource Constrained Project Scheduling Model

- Timetabling
 - Sport Timetabling
 - Reservations and Education
 - University Timetabling
 - Crew Scheduling
 - Public Transports
- Vechicle Routing
 - Capacited Models
 - Time Windows models
 - Rich Models

1. Resource Constrained Project Scheduling Model

2. Dispatching Rules

3. Single Machine Models

Dispatching rules

Distinguish static and dynamic rules.

- Service in random order (SIRO)
- Earliest release date first (ERD=FIFO)
 - tends to min variations in waiting time
- Earliest due date (EDD)
- Minimal slack first (MS)
 - $j^* = \arg \min_j \{ \max(d_j p_j t, 0) \}.$
 - tends to min due date objectives (T,L)

- (Weighted) shortest processing time first (WSPT)
 - $j^* = \arg \max_j \{w_j / p_j\}.$
 - tends to min $\sum w_j C_j$ and max work in progress and
- Longest processing time first (LPT)
 - balance work load over parallel machines
- Shortest setup time first (SST)
 - tends to min C_{max} and max throughput
- Least flexible job first (LFJ)
 - eligibility constraints

- Critical path (CP)
 - first job in the CP
 - tends to min Cmax
- Largest number of successors (LNS)
- Shortest queue at the next operation (SQNO)
 - tends to min idleness of machines

Dispatching Rules in Scheduling

	RULE	DATA	OBJECTIVES
Rules Dependent	ERD	ri	Variance in Throughput Times
on Release Dates	EDD	d_j	Maximum Lateness
and Due Dates	MS	dj	Maximum Lateness
	LPT	Pj	Load Balancing over Parallel Machines
Rules Dependent	SPT	Pi	Sum of Completion Times, WIP
on Processing	WSPT	p_j, w_j	Weighted Sum of Completion Times, WIP
Times	CP	p _j , prec	Makespan
	LNS	p _j , prec	Makespan
	SIRO	-	Ease of Implementation
Miscellaneous	SST	s _{ik}	Makespan and Throughput
	LFJ	М _і	Makespan and Throughput
	SQNO	-	Machine Idleness

When dispatching rules are optimal?

	RULE	DATA	ENVIRONMENT
1	SIRO	-	_
2	ERD	r_{j}	$1 \mid r_j \mid \operatorname{Var}(\sum (C_j - r_j)/n)$
3	EDD	d_i	$1 \parallel L_{\max}$
4 5	MS	d_i	$1 \parallel L_{\max}$
5	SPT	p_j	$Pm \mid\mid \sum C_j; Fm \mid p_{ij} = p_j \mid \sum C_j$
6	WSPT	w_i, p_i	$Pm \parallel \sum w_i C_i$
7	LPT	p_j	$Pm \parallel C_{\max}$
8	SPT-LPT	p_i	$Fm \mid block, p_{ij} = p_j \mid C_{max}$
9	CP	$p_i, prec$	$Pm \mid prec \mid C_{max}$
10	LNS	$p_i, prec$	$Pm \mid prec \mid C_{max}$
11	SST	Sjk	$1 \mid s_{ik} \mid C_{\max}$
12	LFJ	M _i	$Pm \mid M_j \mid C_{\max}$
13	LAPT	Pij	$O2 \parallel C_{\max}$
14	SQ	-	$Pm \mid\mid \sum C_i$
15	SQNO	_	$Jm \parallel \gamma$

Composite dispatching rules

RCPSP Dispatching Rules Single Machine Models

Why composite rules?

- Example: $1 \mid \sum w_j T_j$:
 - WSPT, optimal if due dates are zero
 - EDD, optimal if due dates are loose
 - MS, tends to minimize T

> The efficacy of the rules depends on instance factors

Instance characterization

- Job attributes: {weight, processing time, due date, release date}
- Machine attributes: {speed, num. of jobs waiting, num. of jobs eligible}
- Possible instance factors:

$$1 \mid \mid \sum w_j T_j$$

$$\theta_1 = 1 - \frac{\overline{d}}{C_{max}} \qquad \text{(due date tightness)}$$

$$\theta_2 = \frac{d_{max} - d_{min}}{C_{max}} \qquad \text{(due date range)}$$

• $1 | s_{jk}| \sum w_j T_j$ $(\theta_1, \theta_2 \text{ with estimated } \hat{C}_{max} = \sum_{j=1}^n p_j + n\overline{s})$ $\theta_3 = \frac{\overline{s}}{\overline{p}}$ (set up time severity) • $1 || \sum w_j T_j$, dynamic apparent tardiness cost (ATC)

$$J_j(t) = rac{w_j}{p_j} \exp\left(-rac{\max(d_j - p_j - t, 0)}{\kappa \overline{p}}
ight)$$

• $1 | s_{jk} | \sum w_j T_j$, dynamic apparent tardiness cost with setups (ATCS)

$$I_j(t, l) = \frac{w_j}{p_j} \exp\left(-\frac{\max(d_j - p_j - t, 0)}{K_1 \bar{p}}\right) \exp\left(\frac{-s_{jk}}{K_2 \bar{s}}\right)$$

after job / has finished.

1. Resource Constrained Project Scheduling Model

2. Dispatching Rules

3. Single Machine Models

Outlook

- $1 \mid \sum w_j C_j$: weighted shortest processing time first is optimal
- $1 \mid \sum_{j} U_{j}$: Moore's algorithm
- 1 | prec
| L_{max} : Lawler's algorithm, backward dynamic programming in
 $\mathcal{O}(n^2)$ [Lawler, 1973]
- $1 \mid \mid \sum h_j(C_j)$: dynamic programming in $O(2^n)$
- $1 \mid \mid \sum \textit{w}_{\textit{j}} \textit{T}_{\textit{j}} \mid$: local search and dynasearch
- $1 \mid r_j, (prec) \mid L_{max}$: branch and bound
- $1 \mid s_{jk} \mid C_{max}$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$
- $1 \mid \sum w_j T_j$: column generation approaches

Summary

Single Machine Models:

- *C_{max}* is sequence independent
- if $r_j = 0$ and h_j is monotone non decreasing in C_j then optimal schedule is nondelay and has no preemption.

[Total weighted completion time]

Theorem

The weighted shortest processing time first (WSPT) rule is optimal.

Extensions to $1 \mid prec \mid \sum w_j C_j$

- in the general case strongly NP-hard
- chain precedences: process first chain with highest ρ -factor up to, and included, job with highest ρ -factor.
- polytime algorithm also for tree and sp-graph precedences

- Extensions to $1 | r_j, prmp | \sum w_j C_j$
 - in the general case strongly NP-hard
 - preemptive version of the WSPT if equal weights
 - however, $1 | r_j | \sum w_j C_j$ is strongly NP-hard

RCPSP Dispatching Rules Single Machine Models

 $1 \mid \mid \sum_{j} U_{j}$

[Number of tardy jobs]

- [Moore, 1968] algorithm in $O(n \log n)$
 - Add jobs in increasing order of due dates
 - If inclusion of job j* results in this job being completed late discard the scheduled job k* with the longest processing time
- $1 \mid \sum_{i} w_{j} U_{j}$ is a knapsack problem hence NP-hard

Dynamic programming

Procedure based on divide and conquer

Principle of optimality the completion of an optimal sequence of decisions must be optimal

- Break down the problem into stages at which the decisions take place
- Find a recurrence relation that takes us backward (forward) from one stage to the previous (next)
- Typical technique: labelling with dominance criteria

(In scheduling, backward procedure feasible only if the makespan is schedule independent, eg, single machine problems without setups, multiple machines problems with identical processing times.)

$1 \mid prec \mid h_{max}$

- $h_{max} = \max\{h_1(C_1), h_2(C_2), \dots, h_n(C_n)\}, h_j \text{ regular}$
- special case: 1 | prec | L_{max} [maximum lateness]
- solved by backward dynamic programming in $O(n^2)$ [Lawler, 1978]

J set of jobs already scheduled; J^c set of jobs still to schedule; J' \subseteq J^c set of schedulable jobs

- Step 1: Set $J = \emptyset$, $J^c = \{1, \dots, n\}$ and J' the set of all jobs with no successor
- Step 2: Select j^* such that $j^* = \arg \min_{j \in J'} \{h_j (\sum_{k \in J^e} p_k)\};$ add j^* to J; remove j^* from J^c ; update J'.

Step 3: If J^c is empty then stop, otherwise go to Step 2.

- For $1 \mid \mid L_{max}$ Earliest Due Date first
- $1|r_j|L_{max}$ is instead strongly NP-hard

Summary

- $1 \mid \sum w_j C_j$: weighted shortest processing time first is optimal
- $1 \mid \sum_{i} U_{i}$: Moore's algorithm
- 1 | prec
| L_{max} : Lawler's algorithm, backward dynamic programming in
 $\mathcal{O}(n^2)$ [Lawler, 1973]
- $1 \mid \mid \sum h_j(C_j)$: dynamic programming in $O(2^n)$
- $1 \mid r_j, (prec) \mid L_{max}$: branch and bound
- $1 \mid \sum w_j T_j$: local search and dynasearch
- $1 \mid \mid \sum w_j T_j$: IP formulations, column generation approaches
- $1\mid s_{jk}\mid C_{max}$: in the special case, Gilmore and Gomory algorithm optimal in $O(n^2)$

Multicriteria