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Branch and Bound
IP ModelsCourse Overview

4 Scheduling
4 Classification
4 Complexity issues
4 Single Machine

Parallel Machine and Flow
Shop Models
Job Shop
Resource Constrained Project
Scheduling Model

Timetabling
Sport Timetabling
Reservations and Education
University Timetabling
Crew Scheduling
Public Transports

Vechicle Routing
Capacited Models
Time Windows models
Rich Models
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IP ModelsComplexity resume

Single machine, single criterion problems 1 | | γ1 | | γ1 | | γ:

Cmax P
Tmax P
Lmax P
hmax P∑

Cj P∑
wjCj P∑
U P∑
wjUj weakly NP-hard∑
T weakly NP-hard∑
wjTj strongly NP-hard∑
hj(Cj) strongly NP-hard

4



Branch and Bound
IP ModelsOutline

1. Branch and Bound

2. IP Models

5



Branch and Bound
IP Models1 | rj | Lmax1 | rj | Lmax1 | rj | Lmax

[Maximum lateness with release dates]

Strongly NP-hard (reduction from 3-partition)

might have optimal schedule which is not non-delay

Branch and bound algorithm (valid also for 1 | rj , prec | Lmax)
Branching:
schedule from the beginning (level k, n!/(k − 1)! nodes)
elimination criterion: do not consider job jk if:

rj > min
l∈J
{max (t, rl ) + pl} J jobs to schedule, t current time

Lower bounding: relaxation to preemptive case for which EDD is optimal
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Branch and Bound
S root of the branching tree� �

1 LIST := {S};
2 U:=value of some heuristic solution;
3 current_best := heuristic solution;
4 while LIST 6= ∅
5 Choose a branching node k from LIST;
6 Remove k from LIST;
7 Generate children child(i), i = 1, . . . , nk , and calculate corresponding lower

bounds LBi ;
8 for i :=1 to nk

9 if LBi < U then
10 if child(i) consists of a feasible solution then
11 U:=LBi ;
12 current_best:=solution corresponding to child(i)
13 else add child(i) to LIST
14 // else prune� �

Pruning: (i) by bound (ii) by optimality (iii) by infeasibility
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Branch and bound vs backtracking

= a state space tree is used to solve a problem.

6= branch and bound does not limit us to any particular way of traversing
the tree (backtracking is depth-first)

6= branch and bound is used only for optimization problems.

Branch and bound vs A∗

= In A∗ the admissible heuristic mimics bounding

6= In A∗ there is no branching. It is a search algorithm.

6= A∗ is best first
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[Jens Clausen (1999). Branch and Bound Algorithms
- Principles and Examples.]

Eager Strategy:

1. select a node
2. branch
3. for each subproblem compute bounds and compare with incumbent

solution
4. discard or store nodes together with their bounds

(Bounds are calculated as soon as nodes are available)

Lazy Strategy:

1. select a node
2. compute bound
3. branch
4. store the new nodes together with the bound of the father node

(often used when selection criterion for next node is max depth)
9
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Components

1. Initial feasible solution (heuristic) – might be crucial!
2. Bounding function
3. Strategy for selecting
4. Branching
5. Fathoming (dominance test)
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Bounding

min
s∈P

g(s) ≤
{
mins∈P f (s)
mins∈S g(s)

}
≤ min

s∈S
f (s)

P: candidate solutions; S ⊆ P feasible solutions

relaxation: mins∈P f (s)

solve (to optimality) in P but with g

Lagrangian relaxation combines the two

should be polytime and strong (trade off)
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Strategy for selecting next subproblem

best first
(combined with eager strategy but also with lazy)

breadth first
(memory problems)

depth first
works on recursive updates (hence good for memory)
but might compute a large part of the tree which is far from optimal
(enhanced by alternating search in lowest and largest bounds combined
with branching on the node with the largest difference in bound between
the children)
(it seems to perform best)
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Branching

dichotomic

polytomic

Overall guidelines

finding good initial solutions is important

if initial solution is close to optimum then the selection strategy makes
little difference

Parallel B&B: distributed control or a combination are better than
centralized control

parallelization might be used also to compute bounds if few nodes alive

parallelization with static work load distribution is appealing with large
search trees
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IP Models1 | |

∑
wjTj1 | |

∑
wjTj1 | |

∑
wjTj

Branching:
work backward in time

elimination criterion:
if pj ≤ pk and dj ≤ dk and wj ≥ wk then there is an optimal schedule
with j before k

Lower Bounding:
relaxation to preemptive case
transportation problem, introduce costs∑T−pj

t=1 cjt = hj(t + pj) ∀j = 1..n; t = 1..(T − pj)

min
n∑

j=1

Cmax∑
t=1

cjtxjt

s.t.
Cmax∑
t=1

xjt = pj , ∀j = 1, . . . , n

n∑
j=1

xjt ≤ 1, ∀t = 1, . . . ,Cmax

xjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . ,Cmax
14



Branch and Bound
IP Models

[Pan and Shi, 2007]’s lower bounding through time indexed
Stronger but computationally more expensive

min
n∑

j=1

T−1∑
t=1

cjtyjt

s.t.
T−pj∑
t=1

yjt = 1, ∀j = 1, . . . , n

n∑
j=1

t∑
s=t−pj+1

yjt ≤ 1, ∀t = 1, . . . ,Cmax

yjt ≥ 0 ∀j = 1, . . . , n; t = 1, . . . ,Cmax
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Sequencing variables

1|prec|
∑

wjCj

Sequencing (linear ordering) variables

min
n∑

j=1

n∑
k=1

wjpkxkj +
n∑

j=1

wjpj

s.t. xkj + xjl + xlk ≥ 1 j , k, l = 1, . . . , n; j 6= k, k 6= l
xkj + xjk = 1 ∀j , k = 1, . . . , n, j 6= k
xjk ∈ {0, 1} j , k = 1, . . . , n
xjj = 0 ∀j = 1, . . . , n
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Completion time

1|prec|Cmax

Completion time variables ∈ R and job precedences ∈ B for disjunctive
constraints

min
n∑

j=1

wjzj

s.t. zk − zj ≥ pk for j → k ∈ A
zj ≥ pj , for j = 1, . . . , n
zk − zj ≥ pk or zj − zk ≥ pj , for (i , j) ∈ I
zj ∈ R, j = 1, . . . , n
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Time indexed variables

1||
∑

hj (Cj )

Time indexed variables

min
n∑

j=1

T−pj+1∑
t=1

hj(t + pj)xjt

s.t.
T−pj+1∑

t=1

xjt = 1, for all j = 1, . . . , n

n∑
j=1

t∑
s=max{0,t−pj+1}

xjs ≤ 1, for each t = 1, . . . ,T

xjt ∈ {0, 1}, for each j = 1, . . . , n; t = 1, . . . ,T

+ The LR of this formulation gives better bounds than the two preceding
+ Flexible with respect to objective function
− Pseudo-polynomial number of variables
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Moved to next lecture
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IP ModelsBack to our Time-Indexed Formulation

max cT x

s. t. Ax ≤ b

Dx ≤ d

x ∈ Zn
+

max cT x (IP)

s. t. Ax ≤ b

x ∈ P

polytope P = {x ∈ Zn : Dx ≤ d}

Assuming that P is bounded and has a finite number of points {x s}, s ∈ Q
it can be represented by its extreme points x1, . . . , xk :

x s =
K∑

k=1

λkx
k , with

K∑
k=1

λk = 1, λk ≥ 0

substituting in (IP) leads to DW master problem:

max
∑

k

(cxk)λk (MP)

s. t.
∑

k

(Axk)λk ≤ b

K∑
k=1

λk = 1

λk ≥ 0
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Dantzig-Wolfe decomposition
Reformulation:

min
n∑

j=1

T−pj+1∑
t=1

hj(t + pj)xjt

s.t.
T−pj+1∑

t=1

xjt = 1, for all j = 1, . . . , n

xjt ∈ X for each j = 1, . . . , n; t = 1, . . . ,T − pj + 1

where X =

x ∈ {0, 1} :
n∑

j=1

t∑
s=t−pj+1

xjs ≤ 1, for each t = 1, . . . ,T


x l , l = 1, . . . , L extreme points of X .

X =

 x ∈ {0, 1} : x =
∑L

l=1 λlx l∑L
l=1 λl = 1,

λl ∈ {0, 1}


matrix of X is interval matrix

extreme points are integral

they are pseudo-schedules



Dantzig-Wolfe decomposition
Substituting X in original model getting master problem

min
n∑

j=1

T−pj+1∑
t=1

hj(t + pj)(
L∑

l=1

λlx l
jt)

π s.t.
L∑

l=1

T−pj+1∑
t=1

x l
jt

λl = 1, for all j = 1, . . . , n⇐=
L∑

l=1

nl
jλl = 1

α

L∑
l=1

λl = 1,

λl ∈ {0, 1} ⇐= λl ≥ 0 LP-relaxation

nl
j number of times job j appears in pseudo-schedule l

solve LP-relaxation by column generation on pseudo-schedules x l

reduced cost of λk is c̄k =
n∑

j=1

T−pj+1∑
t=1

(cjt − πj)xk
jt − α



Branch and Bound
IP ModelsPricing problem

Subproblem solved by finding shortest path in a network N with

1, 2, . . . ,T + 1 nodes corresponding to time periods
process arcs, for all j , t, t → t + pj and cost cjt − πj

idle time arcs, for all t, t → t + 1 and cost 0

a path in this network corresponds to a pseudo-schedule in which a job
may be started more than once or not processed.

since network is directed and acyclic, shortest path found in O(nT )
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IP ModelsFurther Readings

the lower bound on the master problem produced by the LP-relaxation
of the restricted master problem can be tighten by inequalities

J. van den Akker, C. Hurkens and M. Savelsbergh.
Time-Indexed Formulations for Machine Scheduling Problems:
Column Generation. INFORMS Journal On Computing, 2000,
12(2) , 111-124

A. Pessoa, E. Uchoa, M.P. de AragÃ£o and R. Rodrigues.
Exact algorithm over an arc-time-indexed formulation for
parallel machine scheduling problems. 2010, 2, 259-290

proposes another time index formulation that dominates this one.
They can solve consistently instances up to 100 jobs.
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