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Relaxation
In branch and bound we find upper bounds by relaxing the problem

Relaxation

Y

el

{ maxscp f(s) } > max f(s)

maxscs g(5) ses

@ P: candidate solutions;
@ S C P feasible solutions;

° g(x) = f(x)

Which constraints should be relaxed?

o Quality of bound (tightness of relaxation)

@ Remaining problem can be solved efficiently

(]

Proper multipliers can be found efficiently
o Constraints difficult to formulate mathematically

o Constraints which are too expensive to write up



Different relaxations

Tighter
@ LP-relaxation
@ Deleting constraint Best surrogate
relaxation
o Lagrange relaxation
@ Surrogate relaxation Best Lagrangian
relaxation
o Semidefinite relaxation
LP relaxation

Relaxations are often used in combination.



Tightness of relaxation

max cx
st. Ax< b
Dx < d

n

x € 7Y

LP-relaxation:

max{cx : x € conv(Ax < b,Dx < d,x € Z,)}

~ Lagrangian Relaxation:
max z r(A) = ex — A(Dx — d)
st. Ax < b
x ez

LP-relaxation:

max {cx : Dx < d,x € conv(Ax < b,x € Z)}



Surrogate relaxation

Relax complicating constraints Dx < d.
~ Surrogate Relax Dx < d using multipliers A\ > 0, i.e., ad dtogether
constraints using weights A

zsr(A) = max cx

L ASb s Dual Probl
ADx < Ad urrogate Dual Problem
x ezl Zsp = Tz”(} z1r(N)

LP Relaxation:
max {cx : x € conv(Ax < b,A\Dx < \d,x € Z,)}

best surrogate relaxation (i.e., best A multipliers) is tighter than best
Lagrangian relax.



Surrogate relaxation, example

maximize 4x; + x»

subjectto 3x; — x < 6
n <3
5x1 + 20 < 18
X1, x2 > 0, integer

ey

4 4 I
+ { + t

IP solution (x1,x2) = (2,3) with z;p = 11
LP solution (x,x2) = (2,24) with 7, = 2 = 13.1

First and third constraint complicating, surrogate relax us-
ing multipliers A; = 2, and A3 = 1

maximize 4x; + x

subject to xn < 3
11x; < 30
X1, x2 > 0, integer

Solution (x1,x2) = (2,3) withzgg =4-2+3 =11
Upper bound



Relaxation strategies

Which constraints should be relaxed
o "the complicating ones"

@ remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

@ remaining problem is totally unimodular
(e.g. network problems)

@ remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

@ constraints which cannot be expressed in MIP terms
(e.g. cutting)

@ constraints which are too extensive to express
(e.g. subtour elimination in TSP)
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Subgradient optimization Lagrange multipliers

max z = cx
s.t. Ax < b
Dx <d
xeZl

Lagrange Relaxation, multipliers A > 0
z1r(A) = max cx — A(Dx — d)
s.t. Ax < b
x €Ll

Lagrange Dual Problem

ZIpD = min Z[_R()\)
A>0

@ We do not need best multipliers in B&B algorithm

@ Subgradient optimization fast method
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Subgradient optimization, motivation

»
>

X Xnet

X

n

Netwon-like method to minimize a

function in one variable

cxy —MDx; —d
zr(2) ! (c,m l— A (})14 —d)

cxs —A(Dxs —d)

cxy —A(Dx; —d)

cx3 —h(Dx3 —d)

cxg —MDxe —d) 2

Lagrange function z; g(\) is piecewise
linear and convex
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Digression: Gradient methods

Gradient methods are iterative approaches:

o find a descent direction with respect to the objective function f
@ move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient
descent, Newton-Raphson method and others. The step size can be
computed either exactly or loosely by solving a line search problem.

Example: gradient descent

1. Set iteration counter t = 0, and make an initial guess xg for the
minimum

2. Repeat:

3. Compute a descent direction A; = V(f(x:))

4. Choose a; to minimize f(x; — ;) over @ € Ry

5. Update x;y1 = x; —a;A¢,and t =t + 1

6. Until |[Vf(xx)|| < tolerance

Step 4 can be solved 'loosely’ by taking a fixed small enough value o > 0
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Newton-Raphson method

[from Wikipedia]
Find zeros of a real-valued derivable function

x:f(x)=0.

@ Start with a guess xp

@ Repeat:
Move to a better approximation

f(Xn)

Xn4+1 = Xn — f/(X )
n

until a sufficiently accurate value is reached.
Geometrically, (x,,0) is the intersection with the x-axis of a line tangent to f

at (x,, F(x4))-
(o - B _ ) 0

AX " Xo— X1



Subgradient

Generalization of gradients to non-differentiable functions.
Definition

An m-vector 7 is subgradient of f()) at \ if

FA) = F(A) +9(A = X)

The inequality says that the

hyperplane N
y=FfA) +7(A=X)

is tangent to y = f()\) at A = \ and

supports 7(\) from below

x
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Proposition Given a choice of nonnegative multipliers \. If X’ is an optimal
solution to z;g(\) then
v=d— Dx

is a subgradient of z; z()\) at A = .

Proof We wish to prove that from the subgradient definition:

_ _ > Y _ ~(\ — )
Arr;egé(cx ADx — d)) > max (ex = A(Dx — d)) +v(A = A)

Let X’ be an opt. solution to () on the right hand side
Inserting v we get:

l\r;agz(cx —ANDx —d)) > (d — DX')(A — A) + (cx' — M(DxX' — d))
= cx' — \(Dx" — d)
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Intuition
Lagrange dual:

min z g(A) = cx — A(Dx — d)
st. Ax < b
x ezl

Gradient in X’ is
v=d— Dx

Subgradient lteration
Recursion
N = max { Ak — 0+, 0}

where 0 > 0 is step-size
If v > 0 and @ is sufficiently small z; g(\) will decrease.
@ Small € slow convergence

@ Large ¢ unstable
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Held and Karp

Initially
A0 = {0,...,0}
compute the new multipliers by recursion
1) . { A if |yl <e
i T

max(A") —0y;,0) if |y;| > ¢
where ¥ is subgradient.

The step size 8 is defined by

0 =p——s
LY
where y is an appropriate constant

E.g. p = 1 and halved if upper bound not decreased in 20
iterations




Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

o Dual variables are best choice of Lagrange multipliers

o Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

o lterative algorithms

@ Polynomial algorithms
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Dantzig-Wolfe Decomposition

Motivation: Large difficult IP models

= split them up into smaller pieces

Applications
o Cutting Stock problems

@ Multicommodity Flow problems

(]

Facility Location problems

Capacitated Multi-item Lot-sizing problem

(4]

o Air-crew and Manpower Scheduling

(]

Vehicle Routing Problems

o Scheduling (current research)

Leads to methods also known as:
@ Branch-and-price (column generation + branch and bound)

@ Branch-and-cut-and-price (column generation + branch and bound +
cutting planes)
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Dantzig-Wolfe Decomposition
The problem is split into a master problem and a subproblem

+ Tighter bounds

+ Better control of subproblem

— Model may become (very) large

Delayed column generation
Write up the decomposed model gradually as needed

o Generate a few solutions to the subproblems
@ Solve the master problem to LP-optimality

@ Use the dual information to find most promising solutions to the
subproblem

o Extend the master problem with the new subproblem solutions.

22



Motivation: Cutting stock problem

e Infinite number of raw stocks, having length L.

e Cut m piece types i, each having width w; and demand
is

e Satisfy demands using least possible raw stocks.

Example:
ew =5.b =17 —
e wr,=3.5h=3  —

e Raw length L. = 22
|

Some possible cuts




Formulation 1

minimize uy + Uy + 3 + g+ s
subject to 5x11 + 3x12 < 22y

Sxa1 4+ 3x22 < 221
Sx31+ 3x32 £ 22u3
Sx41+ 3x40 < 221y
5)551 + 3152 S 22H5

X114 X21 + X310+ Xa1 x5 > 7
xi2+x2+xn+xp+xsn >3

uj€{0,1}
Xij € Ly

LP-relaxation gives solution value z = 2 with

up=1tr=1,x1=26,x15=3,x =44

Block structure

min 1
=1 am

I
Sapy 32 =220,

1 +ra

+iz ez

Seo +3uz =22

Sy 4 drxp — 22y

Sryp +352

+ii2

+x51
+

-22uy

Swey + dusz = 22

IAIATAIAN Y
cooowa

1A




Formulation 2

The matrix A contains all different cutting patterns
All (undominated) patterns:

Problem
minimize A + A + Az + Ay + As

subject to 44, + 0hy + 1A+ 2A4 +3hs > 7
Ohi+ The + 5A3+4hy + 245 > 3

A.’,' < Z+
LP-relaxation gives solution value z = 2,125 with

A =1.375,4=0.75

Due to integer property a lower bound is [2.125] = 3.
Optimal solution value is z* = 3.

Round up LP-solution getting heuristic solution zy = 3.



Decomposition

If model has “block™ structure
max clx! 4+ e 44+ KK

st Alx! 4+ A% 4 4+ AR = b
Dix' 4 < d,
+ D%’ < d,
S :
DK)CK S dK
ez} FezP ... xXez¥

Lagrangian relaxation

Objective becomes

ol 22 4 oKk

A (A AT AR — b)
Decomposed into
maxelx! = A £ 22 — A4 L KK AR K L p

s.t. D!+ <d,
—+ D*x? S dg
<
DKXK Sd}(
X ez} ¥rez? ... xNemk

Model is separable



Dantzig-Wolfe decomposition

If model has “block™ structure

max ¢lx! + ex? o
st Al o+ AR 4+ .+ ANK =
D'x! —+ < dy
—+ D2x2 S dg
<
DEXK <d
ez} X¥Per .. xXezf
Describe each set X*, k= 1,...,K
max clx! + 22 4 ...+ oKxf
st Ayl + A%+ 4+ ARE =p
xex! KFex? ... FKexX

where X* = [¥* € ZF : D" < d,}

Assuming that X has finite number of points {x**} r € 7
. FeR%: xh =¥ g gt
Xt = ):,re'{‘k 7‘-&,1 =1,
Moe{01}rel;



Dantzig-Wolfe decomposition

Substituting X* in original model getting Master Problem

max ¢! (Z Ay + ( Z Do) 4., 4+ Z Ak, x5

= el teTy
sto AY(Y M)A (Y M)+ AN (Y A ) =b
reT) €Ty 1€k
Y h,=1 k=1,....K
teTy

s € {0,1}, tet k=1,....K



Strength of linear master model

Solving LP-relaxation of master problem, is equivalent to

(Wolsey Prop 11.1)

max clx! + 2x? +...+ cFk

s.t. Al 4+ AN+ 4+ AR =p
' econv(X') x*econv(X?) ... x*€conv(X¥)

Proof: Consider LP-relaxation

maxe (Y o)+ (Y oo™ o+ K Y A )

L=t teh teTy
st ALY M ) +AX Y R o)+ +AR (Y Mg d®)=b
5 €T, =7
Zlk,r:] k=1,...,K
=)
die >0, ret; k=1,.. K

Informally speaking we have
e joint constraint is solved to LP-optimality

e block constraints are solved to IP-optimality



Strength of Lagrangian relaxation

o 71"M be LP-solution value of master problem

o 712 be solution value of lagrangian dual problem

(Theorem 11.2)
APM _ LD

<

Proof: Lagrangian relaxing joint constraint in

2 2
max c'x' + & 4.+ K

st Al 4+ A%2 4 4+ AKK =
Dx! —+ <d
+ szz S d:
<
DEXR < dy
xle z} X e Zr ... XMz
Using result next page
max clx! + cix? +...+ ckxk
s.t. Alx! + A2 +o4+ AR

xteconv(X!) x*ecconv(X?) ... x*&conv(X*)

=b



Strength of Lagrangian Relaxation (section 10.2)

Integer Programming Problem

maximize cx
subjectto Ax <b
Dx<d
X;i €Ly, j=1,...,n

Lagrange Relaxation, multipliers A > 0

maximize z;z(A)=cx—A(Dx—d)
subjectto Ax <b
Xj EZ+7 j: ].,...,H

for best multiplier A > 0

max{cx :Dx <dxeconv(Ax < b,x € Z+)}




Delayed Column Generation

Delayed column generation, linear master

@ Master problem can (and will) contain many columns
o To find bound, solve LP-relaxation of master

o Delayed column generation gradually writes up master
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Delayed column generation, linear master

ew =5,b=7 |
ew,=3,bh=3 |
e Raw length L = 22
Some possible cuts
| ] | ] |
CI— T T 1T T 7171
C T T ]
IS IS | S S —
[ I I I i |
In matrix form
40123 ...
A:(()? 542 )
LP-problem
min ex
st. Ax=bh
x>0
where
e h=(7,3),

e = (Xl,xz,x,;,x_q,)(s,"')
ec= (11111



Revised Simplex Method

max {cx | Ax < b,x > 0}

B = {1...m} basic variables

N ={n+1...n+ m} non-basic variables (will be set to lower bound 0)
Ag = [Ar...Anl

An = [Anst -+ Ansm]

Standard form



basic feasible solution:

Ax = Ayxy + Agxg = b e Xy=0
ABXB =b— ANXN ] AB lin. indep.
Xg = Aglb — AEIANXN e Xg >0

Z=cx = CB(AEIb - AglANxN) + XN =

= CBAglb + (CN — CBAglAN)XN

Canonical form
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The objective function is obtained by multiplying and subtracting constraints
by means of multipliers 7 (the dual variables)

p+q P P
z = E ¢ — E miajj | X + E ¢ — E miajj | Xj + E ;i b;
=1 i—1 J=p+1 i—1 i—1

Each basic variable has cost null in the objective function
P
Cj*ZW;Q,‘jiO — W:CBAEI
i=1
Reduced costs of non-basic variables:

P
G — Y maj
i=1
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Dantzig Wolfe Decomposition with Column Generation

Qriginal problem Restricted master problem

Linking constraints — Column

Convexity constraints I

Block

c
8
3
E

duals

constraints

PE— Subproblem

[illustration by Simon Spoorendonk, DIKU]



Delayed column generation (example)

ew =5,b=7 —/
ewr=3,h=3 =
e Raw length L = 22

Initially we choose only the trivial cutting patterns

()

Solve LP-problem

min cx
st. Ax=h
x>0
ie.
40 x1\_[7
07 x )T\ 3
with solution x; = £ and x» = .—:

by
The dual variables are y = cpA;" i.e.



Small example (continued)

Find entering variable

A _ I 2 30 . Loy
5 4 2 . s
27

ex—yAv = (I-F 1-F 1-F-)

We could also solve optimization problem

1
min 1 ——=X]— =X2
4 7
st Sx;+3x <22
x > 0,integer

which is equivalent to knapsack problem

1 1
max le +?x2
s.t. 511 +312 < 22
x > 0,integer

This problem has optimal solution x; = 2, x> = 4.
Reduced cost of entering variable

11 30 |
-2 d-=1-2 =
i 7 B’ 14°



Small example (continued)

Add new cutting pattern to A getting

403
A:(ovz)

Solve problem to LP-optimality, getting primal solution

5 3
A= g#@; = E
and dual variables
| 1
= Z,}’z = g

Note, we do not need to care about “leaving variable™
To find entering variable, solve

1 1
max —xj+ —x2
Ftgh
st Sxy+3x <22
x > 0,integer
This problem has optimal solution x; = 4, x2 = 0.
Reduced cost of entering variable
1 -4 : OI =0
4 77
5

Terminate with x; = X3 =35 and z1p = % =2.125.



Questions

o Will the process terminate?

Always improving objective value. Only a finite number of basis
solutions.

o Can we repeat the same pattern?

No, since the objective function is improved. We know the best solution
among existing columns. If we generate an already existing column, then
we will not improve the objective.
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Tailing off effect
Column generation may converge slowly in the end

@ We do not need exact solution, just lower bound

@ Solving master problem for subset of columns does not give valid lower

bound (why?)
o Instead we may use Lagrangian relaxation of joint constraint

o “guess’ lagrangian multipliers equal to dual variables from master
problem

a4



Dual Bounds

Linear relaxation of the reduced master problem:
Z| RMP — MaX {CA ‘ /_4/\ < b, A > O}

Note: Z;rvp 7 zimp (LMP Lin. relax. master problem)

However, during colum generation we have access to a dual bound so that we
can terminate the process when a desired solution quality is reached.

When we know that

D N<n

Jjed
for an optimal solution of the master, we cannot improve zgyp by more than
K times the largest reduced cost obtained by the Pricing Problem (PP):

Zrmp + KzZpp < Zmp

(It can be shown that this bound coincide with the Lagrangian dual bound.)
o with convexity constraints > .., A; < 1 then x =1

@ when ¢ = 1 then k¥ = zyp and ZR"’”’P < zmp

lfzp
a5



Convergence in CG

For a problem of minimum:

40 T T T

“Time forsalving the pricing. =]
Upper Bound for MP ———
a5 L ceil(UB) ———
Lower Bound for MP ———

ceil(LB)

0.50 see.
0.40 see.

LB and UB of the continuous Master Problem
Time in seconds for solving the pricing

0 50 100 150 200 250 300 350 400 450 500 550 600 650 70O 750 800 850 900 950

Iterations

[plot by Stefano Gualandi, Milan University]
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Row and Column Generation

In problems with many rows we can generate then like done in column
generation.

Cutting plane methods where the pricing problem is the separation problem.

Combining the two: column generation cannot ignore the missing rows.
Existing approaches are problem specific.

a7



Mixed Integer Linear Programs

@ The primary use of column generation is in this context
(in LP simplex is better)

@ column generation re-formulations often give much stronger bounds than
the original LP relaxation

o Often column generation referred to as branch-and-price
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Branch-and-Price

Terminology

@ Master Problem

@ Restricted Master Problem

(]

Subproblem or Pricing Problem

@ Branch and cut:
Branch-and-bound algorithm using cuts to strengthen bounds.

(]

Branch and price:
Branch-and-bound algorithm using column generation to derive bounds.
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Branch-and-price

@ LP-solution of master problem may have fractional solutions
@ Branch-and-bound for getting IP-solution

In each node solve LP-relaxation of master

(4]

(]

Subproblem may change when we add constraints to master problem

(]

Branching strategy should make subproblem easy to solve

50



Branch-and-price, example

The matrix A contains all different cutting patterns

40123
A:(07542)

ﬂil

Problem
minimize A, +A; +A3 + Ay +As
subject to 4&; +0ho + 123+ 244 + 345 > 7
Ohy + Thy + 543 + 44 + 245 >3
A €EZy
LP-solution &y = 1.375, 34, =0.75

Branchon k=0, =1, 4 =2
e Column generation may not generate pattern (4,0)

® Pricing problem is knapsack problem with pattern for-
bidden



2, =min{cx:Ax>b xE7} Solve the original integer
problem either over the

A= generetad columns (RIP)
or by Branch&Price

relaxation
{ L Pricing problem
yes

Zpyp—mun{cx:Ax=b}

¢'=min 7'y,
A:Hﬂﬂ l m> sty+y=<l, V{iJ"}EE, >(c*,y*: I) I >
v &0,1}, VicV.
no
@l <: <:| (C*,y*: I) <:J

[illustration by Stefano Gualandi, Milan Un.]
(the pricing problem is for a GCP)
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Heuristic solution (eg, in sec. 12.6)

@ Restricted master problem will only contain a subset of the columns
@ We may solve restricted master problem to IP-optimality

@ Restricted master is a “set-covering-like" problem which is not too
difficult to solve
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