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Relaxation
In branch and bound we find upper bounds by relaxing the problem

Relaxation

max
s∈P

g(s) ≥
{
maxs∈P f (s)
maxs∈S g(s)

}
≥ max

s∈S
f (s)

P: candidate solutions;
S ⊆ P feasible solutions;
g(x) ≥ f (x)

Which constraints should be relaxed?

Quality of bound (tightness of relaxation)

Remaining problem can be solved efficiently

Proper multipliers can be found efficiently

Constraints difficult to formulate mathematically

Constraints which are too expensive to write up
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Different relaxations

LP-relaxation

Deleting constraint

Lagrange relaxation

Surrogate relaxation

Semidefinite relaxation

Best Lagrangian 

relaxation

relaxation

Best surrogate

LP relaxation

Tighter

Relaxations are often used in combination.
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Tightness of relaxation

max cx
s.t. Ax ≤ b

Dx ≤ d
x ∈ Zn

+

LP-relaxation:

max {cx : x ∈ conv(Ax ≤ b,Dx ≤ d , x ∈ Z+)}

 Lagrangian Relaxation:

max zLR(λ) = cx − λ(Dx − d)

s.t. Ax ≤ b
x ∈ Zn

+

LP-relaxation:

max {cx : Dx ≤ d , x ∈ conv(Ax ≤ b, x ∈ Z+)}
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Surrogate relaxation

Relax complicating constraints Dx ≤ d .
 Surrogate Relax Dx ≤ d using multipliers λ ≥ 0, i.e., ad dtogether
constraints using weights λ

zSR(λ) = max cx
s.t. Ax ≤ b

λDx ≤ λd
x ∈ Zn

+

Surrogate Dual Problem

zSD = min
λ≥0

zLR(λ)

LP Relaxation:

max {cx : x ∈ conv(Ax ≤ b, λDx ≤ λd , x ∈ Z+)}

best surrogate relaxation (i.e., best λ multipliers) is tighter than best
Lagrangian relax.
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Relaxation strategies

Which constraints should be relaxed

"the complicating ones"

remaining problem is polynomially solvable
(e.g. min spanning tree, assignment problem, linear programming)

remaining problem is totally unimodular
(e.g. network problems)

remaining problem is NP-hard but good techniques exist
(e.g. knapsack)

constraints which cannot be expressed in MIP terms
(e.g. cutting)

constraints which are too extensive to express
(e.g. subtour elimination in TSP)
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Subgradient optimization Lagrange multipliers

max z = cx
s. t. Ax ≤ b

Dx ≤ d
x ∈ Zn

+

Lagrange Relaxation, multipliers λ ≥ 0

zLR(λ) = max cx − λ(Dx − d)

s. t. Ax ≤ b
x ∈ Zn

+

Lagrange Dual Problem

zLD = min
λ≥0

zLR(λ)

We do not need best multipliers in B&B algorithm

Subgradient optimization fast method

Works well due to convexity

Roots in nonlinear programming, Held and Karp (1971)
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Subgradient optimization, motivation

Netwon-like method to minimize a
function in one variable

Lagrange function zLR(λ) is piecewise
linear and convex
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Digression: Gradient methods

Gradient methods are iterative approaches:

find a descent direction with respect to the objective function f
move x in that direction by a step size

The descent direction can be computed by various methods, such as gradient
descent, Newton-Raphson method and others. The step size can be
computed either exactly or loosely by solving a line search problem.

Example: gradient descent

1. Set iteration counter t = 0, and make an initial guess x0 for the
minimum

2. Repeat:
3. Compute a descent direction ∆t = ∇(f (xt))
4. Choose αt to minimize f (xt − α∆t) over α ∈ R+

5. Update xt+1 = xt − αt∆t , and t = t + 1
6. Until ‖∇f (xk)‖ < tolerance

Step 4 can be solved ’loosely’ by taking a fixed small enough value α > 0
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Newton-Raphson method

[from Wikipedia]

Find zeros of a real-valued derivable function

x : f (x) = 0 .

Start with a guess x0

Repeat:
Move to a better approximation

xn+1 = xn −
f (xn)

f ′(xn)

until a sufficiently accurate value is reached.
Geometrically, (xn, 0) is the intersection with the x-axis of a line tangent to f
at (xn, f (xn)).

f ′(xn) =
∆y
∆x

=
f (xn)− 0
xn − xn+1

.
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Subgradient
Generalization of gradients to non-differentiable functions.

Definition

An m-vector γ is subgradient of f (λ) at λ̄ if

f (λ) ≥ f (λ̄) + γ(λ− λ̄)

The inequality says that the
hyperplane

y = f (λ̄) + γ(λ− λ̄)

is tangent to y = f (λ) at λ = λ̄ and
supports f (λ) from below
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Proposition Given a choice of nonnegative multipliers λ̄. If x ′ is an optimal
solution to zLR(λ) then

γ = d − Dx ′

is a subgradient of zLR(λ) at λ = λ̄.

Proof We wish to prove that from the subgradient definition:

max
Ax≤b

(cx − λ(Dx − d)) ≥ max
Ax≤b

(
cx − λ̄(Dx − d)

)
+ γ(λ− λ̄)

Let x ′ be an opt. solution to f (λ̄) on the right hand side
Inserting γ we get:

max
Ax≤b

(cx − λ(Dx − d)) ≥ (d − Dx ′)(λ− λ̄) + (cx ′ − λ̄(Dx ′ − d))

= cx ′ − λ(Dx ′ − d)
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Intuition
Lagrange dual:

min zLR(λ) = cx − λ(Dx − d)

s.t. Ax ≤ b
x ∈ Zn

+

Gradient in x ′ is
γ = d − Dx ′

Subgradient Iteration
Recursion

λk+1 = max
{
λk − θγk , 0

}
where θ > 0 is step-size

If γ > 0 and θ is sufficiently small zLR(λ) will decrease.
Small θ slow convergence

Large θ unstable
17
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Lagrange relaxation and LP
For an LP-problem where we Lagrange relax all constraints

Dual variables are best choice of Lagrange multipliers

Lagrange relaxation and LP "relaxation" give same bound

Gives a clue to solve LP-problems without Simplex

Iterative algorithms

Polynomial algorithms
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Dantzig-Wolfe Decomposition
Motivation: Large difficult IP models
è split them up into smaller pieces

Applications
Cutting Stock problems

Multicommodity Flow problems

Facility Location problems

Capacitated Multi-item Lot-sizing problem

Air-crew and Manpower Scheduling

Vehicle Routing Problems

Scheduling (current research)

Leads to methods also known as:
Branch-and-price (column generation + branch and bound)

Branch-and-cut-and-price (column generation + branch and bound +
cutting planes)
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Dantzig-Wolfe Decomposition
The problem is split into a master problem and a subproblem

+ Tighter bounds

+ Better control of subproblem

− Model may become (very) large

Delayed column generation
Write up the decomposed model gradually as needed

Generate a few solutions to the subproblems

Solve the master problem to LP-optimality

Use the dual information to find most promising solutions to the
subproblem

Extend the master problem with the new subproblem solutions.
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Delayed Column Generation

Delayed column generation, linear master

Master problem can (and will) contain many columns

To find bound, solve LP-relaxation of master

Delayed column generation gradually writes up master
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Revised Simplex Method

max {cx | Ax ≤ b, x ≥ 0}
B = {1 . . .m} basic variables
N = {n + 1 . . . n + m} non-basic variables (will be set to lower bound 0)
AB = [A1 . . .Am]

AN = [An+1 . . .An+m]

Standard form AN AB 0 b

cN cB 1 0


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Ax = ANxN + ABxB = b
ABxB = b − ANxN

xB = A−1
B b − A−1

B ANxN

basic feasible solution:
XN = 0
AB lin. indep.
XB ≥ 0

z = cx = cB(A−1
B b − A−1

B ANxN) + cNxN =

= cBA−1
B b + (cN − cBA−1

B AN)xN

Canonical form A−1
B AN I 0 A−1

B b

cT
N − CT

B A−1
B AN 0 1 −cT

B A−1
B b


36



The objective function is obtained by multiplying and subtracting constraints
by means of multipliers π (the dual variables)

z =

p∑
j=1

[
cj −

p∑
i=1

πiaij

]
xj +

p+q∑
j=p+1

[
cj −

p∑
i=1

πiaij

]
xj +

p∑
i=1

πibi

Each basic variable has cost null in the objective function

cj −
p∑

i=1

πiaij = 0 =⇒ π = cBA−1
B

Reduced costs of non-basic variables:

cj −
p∑

i=1

πiaij
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Dantzig Wolfe Decomposition with Column Generation

[illustration by Simon Spoorendonk, DIKU]
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Questions

Will the process terminate?

Always improving objective value. Only a finite number of basis
solutions.

Can we repeat the same pattern?

No, since the objective function is improved. We know the best solution
among existing columns. If we generate an already existing column, then
we will not improve the objective.
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Tailing off effect
Column generation may converge slowly in the end

We do not need exact solution, just lower bound

Solving master problem for subset of columns does not give valid lower
bound (why?)

Instead we may use Lagrangian relaxation of joint constraint

“guess” lagrangian multipliers equal to dual variables from master
problem
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Dual Bounds
Linear relaxation of the reduced master problem:

zLRMP = max
{
cλ | Āλ ≤ b, λ ≥ 0

}
Note: ZLRMP 6≥ zLMP (LMP Lin. relax. master problem)

However, during colum generation we have access to a dual bound so that we
can terminate the process when a desired solution quality is reached.

When we know that∑
j∈J

λj ≤ κ

for an optimal solution of the master, we cannot improve zRMP by more than
κ times the largest reduced cost obtained by the Pricing Problem (PP):

zRMP + κzPP ≤ zMP

(It can be shown that this bound coincide with the Lagrangian dual bound.)
with convexity constraints

∑
j∈J λj ≤ 1 then κ = 1

when ~c = 1 then κ = zMP and zRMP
1−zPP

≤ zMP
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Convergence in CG
For a problem of minimum:

[plot by Stefano Gualandi, Milan University]
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Row and Column Generation

In problems with many rows we can generate then like done in column
generation.

Cutting plane methods where the pricing problem is the separation problem.

Combining the two: column generation cannot ignore the missing rows.
Existing approaches are problem specific.
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Mixed Integer Linear Programs

The primary use of column generation is in this context
(in LP simplex is better)

column generation re-formulations often give much stronger bounds than
the original LP relaxation

Often column generation referred to as branch-and-price
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Branch-and-Price
Terminology

Master Problem

Restricted Master Problem

Subproblem or Pricing Problem

Branch and cut:
Branch-and-bound algorithm using cuts to strengthen bounds.

Branch and price:
Branch-and-bound algorithm using column generation to derive bounds.
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Branch-and-price

LP-solution of master problem may have fractional solutions

Branch-and-bound for getting IP-solution

In each node solve LP-relaxation of master

Subproblem may change when we add constraints to master problem

Branching strategy should make subproblem easy to solve
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[illustration by Stefano Gualandi, Milan Un.]
(the pricing problem is for a GCP)
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Heuristic solution (eg, in sec. 12.6)

Restricted master problem will only contain a subset of the columns

We may solve restricted master problem to IP-optimality

Restricted master is a “set-covering-like” problem which is not too
difficult to solve
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