DM204 – Spring 2011 Scheduling, Timetabling and Routing

Lecture 7 Timetabling: Reservations and Education

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Reservations without slack

2. Reservations with slack

Timetabling

- Transport Timetabling
- Personnel/Employee timetabling
 - Crew scheduling
 - Crew rostering
- Reservations
- Educational Timetabling
 - School/Class timetabling
 - University/Course timetabling
- Sports Timetabling
- Communication Timetabling

- curriculum planning
- project assignment

1. Reservations without slack

2. Reservations with slack

Reservations without slack

Given:

- *m* parallel machines (resources)
- *n* activities
- r_j starting times (integers), d_j termination (integers), w_j or w_{ij} weight, M_j eligibility
- without slack $p_j = d_j r_j$

Task: Maximize weight of assigned activities

Examples: Hotel room reservation, Car rental

Polynomially solvable cases

1. $p_j = 1$

Solve an assignment problem at each time slot

2. $w_j = 1$, $M_j = M$, Obj. minimize resources used

- Corresponds to coloring interval graphs with minimal number of colors
- Optimal greedy algorithm (First Fit):

order $r_1 \leq r_2 \leq \ldots \leq r_n$

Step 1 assign resource 1 to activity 1

```
Step 2 for j from 2 to n do
Assume k resources have been used.
Assign activity j to the resource with minimum feasible value from
\{1, \ldots, k+1\}
```


- 3. $w_i = 1$, $M_i = M$, Obj. maximize activities assigned
 - Corresponds to coloring max # of vertices in interval graphs with k colors
 - Optimal *k*-coloring of interval graphs:

order $r_1 \leq r_2 \leq \ldots \leq r_n$ $J = \emptyset, j = 1$

Step 1 if a resource is available at time r_j then assign activity j to that resource; include j in J; go to Step 3

Step 2 Else, select j^* such that $C_{j^*} = \max_{j \in J} C_j$ **if** $C_j = r_j + p_j > C_{j^*}$ go to Step 3 **else** remove j^* from J, assign j in J

Step 3 if j = n STOP else j = j + 1 go to Step 1

Outline

1. Reservations without slack

2. Reservations with slack

Reservations with Slack

Given:

- *m* parallel machines (resources)
- *n* activities
- r_j starting times (integers), d_j termination (integers), w_j or w_{ij} weight, M_i eligibility
- with slack $p_j \leq d_j r_j$

Task: Maximize weight of assigned activities

Heuristics

Most constrained variable, least constraining value heuristic

 $|M_j|$ indicates how much constrained an activity is ν_{it} : # activities that can be assigned to *i* in [t - 1, t]Select activity *j* with smallest $I_j = f\left(\frac{w_j}{p_j}, |M_j|\right)$ Select resource *i* with smallest $g(\nu_{i,t+1}, \dots, \nu_{i,t+p_j})$ (or discard *j* if no place free for *j*)

Examples for f and g:

$$f\left(\frac{w_j}{p_j}, |M_j|\right) = \frac{|M_j|}{w_j/p_j}$$

$$g(\nu_{i,t+1},\ldots,\nu_{i,t+p_j}) = \max(\nu_{i,t+1},\ldots,\nu_{i,t+p_j})$$

$$g(\nu_{i,t+1},\ldots,\nu_{i,t+\rho_j})=\sum_{l=1}^{\rho_j}\frac{\nu_{i,t+l}}{\rho_j}$$