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Educational timetabling process

Phase: Planning Scheduling Dispatching

Horizon: Long Term Timetable Period Day of
Operation

Objective: Service Level Feasibility Get it Done

Steps:
Manpower,
Curriculum,
Equipment

Quarterly Timetabling,
Project assignment,
student sectioning

Repair
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Assignment of events to a limited number of time periods and locations
subject to constraints

Two categories of constraints:
Hard constraints H = {H1, . . . ,Hn}: must be strictly satisfied, no violation is

allowed
Soft constraints Σ = {S1, . . . ,Sm}: their violation should be minimized

(determine quality)

Each institution may have some unique combination of hard constraints and
take different views on what constitute the quality of a timetable.
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[aka, teacher-class model]
The daily or weekly scheduling for all the classes of a high school, avoiding
teachers meeting two classes in the same time.
Input:

a set of classes C = {C1, . . . ,Cm}
A class is a set of students who follow exactly the same program. Each
class has a dedicated room.

a set of teachers P = {P1, . . . ,Pn}
a requirement matrix Rm×n where Rij is the number of lectures given by
teacher Pj to class Ci .

all lectures have the same duration (say one period)

a set of time slots T = {T1, . . . ,Tp} (the available periods in a day).

Output: An assignment of lectures to time slots such that no teacher or
class is involved in more than one lecture at a time
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IP formulation:

Binary variables: assignment of teacher Pj to class Ci in Tk

xijk = {0, 1} ∀i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , p

Constraints:
p∑

k=1

xijk = Rij ∀i = 1, . . . ,m; j = 1, . . . , n

n∑
j=1

xijk ≤ 1 ∀i = 1, . . . ,m; k = 1, . . . , p

m∑
i=1

xijk ≤ 1 ∀j = 1, . . . , n; k = 1, . . . , p
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Graph model

Bipartite multigraph G = (C,P,R):

nodes C and P: classes and teachers
Rij parallel edges

Time slots are colors Ü Graph-Edge Coloring problem

Theorem: [König] There exists a solution that uses p colors iff:

m∑
i=1

Rij ≤ p ∀j = 1, . . . , n

n∑
i=1

Rij ≤ p ∀i = 1, . . . ,m
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Deciding Rij

Timeslots represent days

ai max number of lectures for a class in a day
bj max number of lectures for a teacher in a day

IP formulation:

Variables: number of lectures to a class in a day

xijk ∈ N ∀i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , p

Constraints:
p∑

k=1

xijk = Rij ∀i = 1, . . . ,m; j = 1, . . . , n

m∑
i=1

xijk ≤ bj ∀j = 1, . . . , n; k = 1, . . . , p

n∑
j=1

xijk ≤ ai ∀i = 1, . . . ,m; k = 1, . . . , p
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Graph model

Edge coloring model still valid but with
no more than ai edges adjacent to Ci have same colors and
and more than bj edges adjacent to Tj have same colors

Theorem: [König] There exists a solution that uses p slots iff:

m∑
i=1

Rij ≤ bjp ∀j = 1, . . . , n

n∑
i=1

Rij ≤ aip ∀i = 1, . . . ,m

Hence, we can find the minimum number of periods needed
or, if p is given, find a formulation of the problem that admits a solution
balancing the work load
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 The edge coloring problem in the multigraph is solvable in polynomial
time by solving a sequence of p network flows problems. [De Werra, 1985]

Possible approach: solve the weekly timetable first and then the daily
timetable
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Further constraints that may arise:

Preassignments
Unavailabilities
(can be expressed as preassignments with dummy class or teachers)

They make the problem NP-complete if any teacher is unavailable during
more than 2 periods.
(Reduction from 3-SAT, [Even, Itai, Shamir, 1975])

Bipartite matchings can still help in developing heuristics, for example,
for solving xijk keeping any index fixed.
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Further complications:

Simultaneous lectures (eg, gymnastic)

Subject issues (more teachers for a subject and more subjects for a
teacher)

Room issues (use of special rooms)
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So far feasibility problem.

Preferences (soft constraints) may be introduced

Desirability of assigning teacher Pj to class Ci in Tk

min
n∑

i=1

m∑
j=1

p∑
k=1

dijkxijk

Organizational costs: having a teacher available for possible temporary
teaching posts

Specific day off for a teacher
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Introducing soft constraints the problem becomes a multiobjective problem.

Possible ways of dealing with multiple objectives:

weighted sum

lexicographic order

minimize maximal cost

distance from optimal or nadir point

Pareto-frontier

Social welfare approaches
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Construction heuristic

Based on principles:

most-constrained lecture on first (earliest) feasible timeslot

most-constrained lecture on least constraining timeslot

Enhancements:
limited backtracking

local search optimization step after each assignment

More later
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Local Search Methods and Metaheuristics
High level strategy:

Single stage (hard and soft constraints minimized simultaneously)

Two stages (feasibility first and quality second)

Dealing with feasibility issue:
partial assignment: do not permit violations of H but allow some
lectures to remain unscheduled

complete assignment: schedule all the lectures and seek to minimize H
violations

More later
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The weekly scheduling of the lectures/events/classes of courses avoiding
students, teachers and room conflicts.
Input:

A set of courses C = {C1, . . . ,Cn} each consisting of a set of lectures
Ci = {Li1, . . . , Lili }. Alternatively,
A set of lectures L = {L1, . . . , Ll}.
A set of curricula S = {S1, . . . ,Sr} that are groups of courses with
common students (curriculum based model). Alternatively,
A set of enrollments S = {S1, . . . ,Ss} that are groups of courses that a
student wants to attend (Post enrollment model).
a set of time slots T = {T1, . . . ,Tp} (the available periods in the
scheduling horizon, one week).
All lectures have the same duration (say one period)

Output:
An assignment of each lecture Li to some period in such a way that no
student is required to take more than one lecture at a time.
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Graph G = (V ,E ):
V correspond to lectures Li

E correspond to conflicts between lectures due to curricula or
enrollments

Time slots are colors Ü Graph-Vertex Coloring problem Ü NP-complete
(exact solvers max 100 vertices)

Typical further constraints:
Unavailabilities
Preassignments

The overall problem can still be modeled as Graph-Vertex Coloring. How?
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A recurrent sub-problem in Timetabling is Matching

Input: A (weighted) bipartite graph G = (V ,E ) with bipartition {A,B}.
Task: Find the largest size set of edges M ∈ E such that each vertex in V is
incident to at most one edge of M.

Efficient algorithms for constructing matchings are based on augmenting
paths in graphs. An implementation is available at:
http://www.cs.sunysb.edu/~algorith/implement/bipm/implement.shtml
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Theorem

Theorem [Hall, 1935]: G contains a matching of A if and only if
|N(U)| ≥ |U| for all U ⊆ A.
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Considering indistinguishable rooms:
mt rooms ⇒ maximum number of lectures in time slot t

Variables

xit ∈ {0, 1} i = 1, . . . , n; t = 1, . . . , p

Number of lectures per course

p∑
t=1

xit = li ∀i = 1, . . . , n

Number of lectures per time slot

n∑
i=1

xit ≤ mt ∀t = 1, . . . , p
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Number of lectures per time slot (students’ perspective)

n∑
Ci∈Sj

xit ≤ 1 ∀j = 1, . . . , n; t = 1, . . . , p

If some preferences are added:

max
p∑

i=1

n∑
i=1

ditxit

Corresponds to a bounded coloring. [de Werra, 1985]
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Further complications:

Teachers that teach more than one course
(not really a complication: treated similarly to students’ enrollment)

A set of rooms R = {R1, . . . ,Rn}
with eligibility constraints
(this can be modeled as Hypergraph Coloring [de Werra, 1985]:

introduce an (hyper)edge for events that can be scheduled in the same
room
the edge cannot have more colors than the rooms available of that type)

Moreover,

Students’ fairness
Logistic constraints: no two adjacent lectures if at different campus
Max number of lectures in a single day and changes of campuses.
Precedence constraints
Periods of variable length
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3D IP model including room eligibility [Lach and Lübbecke, 2008]

R(c) ⊆ R: rooms eligible for course c
Gconf = (Vconf ,Econf ): conflict graph (vertices are pairs (c , t))

min
∑
ctr

d(c, t)xctr ∀c ∈ C∑
t∈T

r∈R(c)

xctr = l(c) ∀c ∈ C

∑
c∈R−1(r)

xctr ≤ 1 ∀t ∈ T , r ∈ R

∑
r∈R(c1)

xc1t1r +
∑

r∈R(c2)

xc2t2r ≤ 1 ∀((c1, t1)(c2, t2)) ∈ Econf

xctr ∈ {1, 0} ∀(c, t) ∈ Vconf , r ∈ R

This 3D model is too large in size and computationally hard to solve

28



Introduction
School Timetabling
Course Timetabling

2D IP model including room eligibility [Lach and Lübbecke, 2008]

Decomposition of the problem in two stages:

Stage 1 assign courses to timeslots

Stage 2 match courses with rooms within each timeslot
solved by bipartite matching

Model in stage 1

Variables: course c assigned to time slot t

xct ∈ {0, 1} c ∈ C, t ∈ T

Edge constraints
(forbids that c1 is assigned to t1 and c2 to t2 simultaneously)

xc1,t1 + xc2,t2 ≤ 1 ∀ ((c1, t1), (c2, t2)) ∈ Econf
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Hall’s constraints
(guarantee that in stage 1 we find only solutions that are feasible for stage 2)
Gt = (Ct ∪Rt ,Et) bipartite graph for each t
G = ∪tGt

n∑
c∈U

xct ≤ |N(U)| ∀ U ⊆ C, t ∈ T

If some preferences are added:

max
p∑

i=1

n∑
i=1

ditxit
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Hall’s constraints are exponentially many

[Lach and Lübbecke, 2008] study the polytope of the bipartite matching
and find strengthening conditions

(polytope: convex hull of all incidence vectors defining subsets of C perfectly
matched)

Algorithm for generating all facets is polynomial if the number of
defining C-sets is polynomially bounded.

Could solve the overall problem by branch and cut (separation problem is
easy).
However the number of facet inducing Hall inequalities is in practice
rather small hence they can be generated all at once
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So far feasibility.

Preferences (soft constraints) may be introduced [Lach and Lübbecke, 2008b]

Compactness or distribution

Minimum working days

Room stability

Student min max load per day

Travel distance

Room eligibility

Double lectures

Professors’ preferences for time slots

Different ways to model them exist.
Often the auxiliary variables have to be introduced
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By substituting events with lecture or exam we have the course or exam
timetabling, respectively

Differences

Course Timetabling Exam Timetabling

limited number of time slots unlimited number of time slots,
seek to minimize

conflicts in single slots, seek to
compact

conflicts may involve entire days
and consecutive days, seek to
spread

one single course per room possibility to set more than one
exam in a room with capacity
constraints

lectures have fixed duration exams have different duration
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Constraint Programming is shown by [Cambazard et al. (PATAT 2008)] to
be not yet competitive

Integer programming is promising [Lach and Lübbecke] and under active
development (see J.Marecek
http://www.cs.nott.ac.uk/~jxm/timetabling/)
however it was not possible to submit solvers that make use of IP
commercial programs

Two teams submitted to all three tracks:

[Ibaraki, 2008] models everything in terms of CSP in its optimization
counterpart. The CSP solver is relatively very simple, binary variables +
tabu search

[Tomas Mueller, 2008] developed an open source Constraint Solver
Library based on local search to tackle University course timetabling
problems (http://www.unitime.org)

All methods ranked in the first positions are heuristic methods based on
local search
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Definition
Find an assignment of lectures to time slots and rooms which is

Feasible

rooms are only used by one lecture at a time,
each lecture is assigned to a suitable room,
no student has to attend more than one lecture at once,
lectures are assigned only time slots where they are available;
precedences are satisfied;


Hard
Constraints

and Good

no more than two lectures in a row for a student,
unpopular time slots avoided (last in a day),
students do not have one single lecture in a day.

 Soft
Constraints

37



Introduction
School Timetabling
Course TimetablingGraph models

We define:

precedence digraph D = (V ,A): directed graph having a vertex for each
lecture in the vertex set V and an arc from u to v , u, v ∈ V , if the
corresponding lecture u must be scheduled before v .

Transitive closure of D: D ′ = (V ,A′)

conflict graph G = (V ,E ): edges connecting pairs of lectures if:

the two lectures share students;

the two lectures can only be scheduled in a room that is the same for
both;

there is an arc between the lectures in the digraph D ′.
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A look at the instances

These are large scale instances.
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A look at the evaluation of a timetable can help
in understanding the solution strategy

High level solution strategy:

Single phase strategy (not well suited here due to soft constraints)

Two phase strategy: Feasibility first, quality second

Searching a feasible solution:
Room eligibility complicate the use of IP and CP.

Solution Representation:
Approach:
1. Complete (infeasible) assignment of lectures
2. Partial (feasible) assignment of lectures

Room assignment:
A. Left to matching algorithm
B. Carried out heuristically (matrix representation of solutions)
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Solution Representation

A. Room assignment left to matching algorithm:

Array of Lectures and Time-slots and/or
Collection of sets of Lectures, one set for each Time-slot

B. Room assignment included

Assignment Matrix

R
oo

m
s

Time-slots
T1 T2 Ti Tj T45

R1 −1 L4 · · · L10 · · · L14 · · · −1
R2 L1 L5 · · · L11 · · · L15 · · · −1
R3 L2 L6 · · · L12 · · · −1 · · · −1
...

...
...

...
...

Rr L3 L7 · · · L13 L16 · · · −1
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Construction Heuristic
most-constrained lecture on least constraining time slot

Step 1. Initialize the set L̂ of all unscheduled lectures with L̂ = L.
Step 2. Choose a lecture Li ∈ L̂ according to a heuristic rule.
Step 3. Let X̂ be the set of all positions for Li in the assignment matrix

with minimal violations of the hard constraints H.
Step 4. Let X̄ ⊆ X̂ be the subset of positions of X̂ with minimal

violations of the soft constraints Σ.
Step 5. Choose an assignment for Li in X̄ according to a heuristic rule.

Update information.
Step 6. Remove Li from L̂, and go to step 2 until L̂ is not empty.
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Local Search Algorithms

Neighborhood Operators:

A. Room assignment left to matching algorithm

The problem becomes a bounded graph coloring
Ü Apply well known algorithms for GCP with few adaptations

Ex:
1. complete assignment representation: TabuCol with one exchange

2. partial assignment representation: PartialCol with i-swaps

See [Blöchliger and N. Zufferey, 2008] for a description
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B. Room assignment included

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25 T26 T27

R10 382 1 56 362 45 247 392 85 389 384 17 394 200 294 273 391 180 42 157 388 397 331 131 363 383

R9 396 144 173 78 25 183 387 337 240 132 328 212 370 308 336 244 126 14 231 51 342 136 93 129 266 393 155

R8 256 32 147 270 289 130 48 282 0 116 251 307 44 260 79 296 242 150 81 353 158 293 338 218 161

R7 228 31 107 371 30 355 46 227 246 271 182 313 224 128 89 258 356 343 280 35 109 306 43 83 11 154

R6 322 225 352 28 168 72 49 69 12 92 38 373 390 164 135 121 268 115 75 87 140 165 104 137 133 385 346

R5 324 291 309 339 267 283 269 170 299 311 34 65 216 275 199 26 27 327 33 39 285

R4 181 160 90 82 193 206 156 152 341 179 171 226 4 348 127 365 213 80

R3 263 71 186 67 222 288 99 24 237 232 253 117 195 203 102 207 287 290 146 286 358 303 277

R2 360 345 2 153 354 91 61 319 349 278 86 204 316 220 323 176 314 7 108 50 312 235 330

R1 187 239 378 66 380 53 208 279 300 350 211 375 254 366 369 223 163 298 118 368 234 97 329 274 58

Monday Tuesday Wednesday

N1: One Exchange
N2: Swap
N5: Insert + Rematch

N3: Period Swap
N4: Kempe Chain Interchange
N6: Swap + Rematch
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Example of stochastic local search for Hard Constraints, representation A.� �
initialize data (fast updates, dont look bit, etc.)
while (hcv!=0 && stillTime && idle iterations < PARAMETER)

shuffle the time slots
for each lecture L causing a conflict
for each time slot T
if not dont look bit
if lecture is available in T
if lectures in T < number of rooms
try to insert L in T
compute delta
if delta < 0 || with a PARAMETER probability if delta==0
if there exists a feasible matching room-lectures
implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break

for all lectures in time slot
try to swap time slots
compute delta
if delta < 0 || with a PARAMETER probability if delta==0

implement change
update data
if (delta==0) idle_iterations++ else idle_iterations=0;
break� �
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Algorithm Flowchart
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Hybrid Heuristic Methods

Some metaheuristic solve the general problem while others or exact
algorithms solve the special problem

Replace a component of a metaheuristic with one of another or an exact
method (ILS+ SA, VLSN)

Treat algorithmic procedures (heuristics and exact) as black boxes and
serialize

Let metaheuristics cooperate (evolutionary + tabu search)

Use different metaheuristics to solve the same solution space or a
partitioned solution space
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Configuration Problem

Algorithms must be configured and tuned and the best selected.

This has to be done anew every time because constraints and their density
(problem instance) are specific of the institution.

Appropriate techniques exist to aid in the experimental assessment of
algorithms. Example: F-race [Birattari et al. 2002]
(see: http://www.imada.sdu.dk/~marco/exp/ for a full list of references)
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A timetabling system consists of:

Information management (database maintenance)

Solver (written in a fast language, i.e., C, C++)

Input and Output management (various interfaces to handle input and
output)

Interactivity: Declaration of constraints (professors’ preferences may be
inserted directly through a web interface and stored in the information
system of the University)

See examples http://www.easystaff.it
http://www.eventmap-uk.com
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The timetabling process

1. Collect data from the information system

2. Execute a few runs of the Solver starting from different solutions
selecting the timetable of minimal cost. The whole computation time
should not be longer than say one night. This becomes a “draft”
timetable.

3. The draft is shown to the professors who can require adjustments. The
adjustments are obtained by defining new constraints to pass to the
Solver.

4. Post-optimization of the “draft” timetable using the new constraints

5. The timetable can be further modified manually by using the Solver to
validate the new timetables.
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