DM545 Linear and Integer Programming

> Lecture 1 Introduction

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction

Resource Allocation Diet Problem Duality

3. Solving LP Problems Fourier-Motzkin method

Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction

Resource Allocation Diet Problem Duality

3. Solving LP Problems Fourier-Motzkin method

Context

Course Introduction Introduction Solving LP Problems

Students:

- Computer Science (3rd year)
- Applied Mathematics (3rd year)
- Math-economy (3rd year)

Prerequisites

- Calculus (MM501, MM502)
- Linear Algebra (MM505)

Practical Information

Teacher: Marco Chiarandini (marco@imada.sdu.dk) Instructor: Christian Nørskov (cnoer10@student.sdu.dk)

Schedule (\approx 24 lecture hours + \approx 20 exercise hours):

Week	15	16 17	18	19	20	21	22	23
Tir, 12-14	Intro (Fælles) (U150)		Intro (Fælles) (U150)					
Tir, 14-16							Træning (S1) (U20)	
Tir, 15-17		Intro (Fælles) (U47)						
Ons, 10-12					Intro (Fælles) (U91)			
Ons, 12-14	Intro (Fælles) (U71)	Lab (S1) (Terminalrum)	Træning (S1) (U56)	Intro (Fælles) (U20)	Træning (S1) (U20)	Træning (S1) (U20)	Træning (S1) (U20)	
Fre, 10-12	Træning (S1) (U42)	Intro (Fælles) (U42)		Træning (S1) (U42)		Intro (Fælles) (U42)	Intro (Fælles) (U42)	Træning (S1) (U42)

Communication tools

- ▶ BlackBoard (BB) ⇔ Public Web Page (WWW) (link from http://www.imada.sdu.dk/~marco/DM545/)
- Announcements in BlackBoard
- Classes
- Personal email

Text book

HL Frederick S Hillier and Gerald J Lieberman, Introduction to Operations Research, 9th edition, 2010

Other references:

- MG J. Matousek and B. Gartner. Understanding and Using Linear Programming. Springer Berlin Heidelberg, 2007
- Wo L.A. Wolsey. Integer programming. John Wiley & Sons, New York, USA, 1998
- FGK Robert Fourer, David M. Gay, and Brian W. Kernighan, AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks Cole, Publishing Company, 2003.

Public Web Page is the main reference for list of contents (pensum). It Contains:

- slides (text missing)
- list of topics
- ▶ links
- software

Contents

Linear Programming

- 1 apr8 Introduction Linear Programming, Notation
- 2 apr9 Linear Programming, Simplex Method
- 3 apr22 Exception Handling
- 4 apr25 Duality Theory
- 5 apr29 Sensitivity
- 6 may6 Revised Simplex Method

Integer Linear Programming

- 7 may7 Modeling Examples, Good Formulations, Relaxations
- 8 may2 Well Solved Problems
- 9 may13 Network Optimization Models (Max Flow, Min cost flow, matching)
- 10 may20 Cutting Planes & Branch and Bound
- 11 may23 More on Modelling
- 12 may27
- 13 may30

Evaluation

► 5 ECTS

- obligatory Assignments, pass/fail, evaluation by teacher (2 hand ins) practical part modeling + programming in AMPL
- 4 hour written exam, 7-grade scale, external censor (theory part) similar to exercises in class on June 10

(language: English and Danish)

- Small projects (in groups of 2) must be passed to attend the written exam
- ► They require the use of the AMPL system + CPLEX or Gurobi Software available for all systems from the Public Web Page: "Software and Data" → "AMPL" (Get the password in class)

Training Sessions

- Prepare them in advance to get out the most
- Best carried out in small groups
- Exam rehearsal (first days of June)

Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction

Resource Allocation Diet Problem Duality

3. Solving LP Problems Fourier-Motzkin method Operation Research (aka, Management Science, Analytics): is the discipline that uses a scientific approach to decision making.

It seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources, by means of **mathematics** and **computer science**.

Quantitative methods for planning and analysis.

Some Examples ...

- Production Planning and Inventory Control
- Budget Investment
- Blending and Refining
- Manpower Planning
 - Crew Rostering (airline crew, rail crew, nurses)
- Packing Problems
 - Knapsack Problem
- Cutting Problems
 - Cutting Stock Problem
- Routing
 - Vehicle Routing Problem (trucks, planes, trains ...)
- Locational Decisions
 - Facility Location
- Scheduling/Timetabling
 - Examination timetabling/ train timetabling
- + many more

Common Characteristics

- Planning decisions must be made
- The problems relate to quantitative issues
 - Fewest number of people
 - Shortest route
- Not all plans are feasible there are constraining rules
 - Limited amount of available resources
- It can be extremely difficult to figure out what to do

OR - The Process?

- 1. Observe the System
- 2. Formulate the Problem
- 3. Formulate Mathematical Model
- 4. Verify Model
- 5. Select Alternative
- 6. Show Results to Company
- 7. Implementation

Central Idea

Build a mathematical model describing exactly what one wants, and what the "rules of the game" are. However, what is a mathematical model and how?

Mathematical Modeling

▶ Find out exactly what the decision makes needs to know:

- which investment?
- which product mix?
- which job j should a person i do?
- Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding to the needs
- Formulate Objective Function computing the benefit/cost
- Formulate mathematical Constraints indicating the interplay between the different variables.

Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction Resource Allocation Diet Problem

Duality

3. Solving LP Problems Fourier-Motzkin method

Resource Allocation

In manufacturing industry, factory planning: find the best product mix.

Example

A factory makes two products standard and deluxe.

A unit of standard gives a profit of 6k Dkk. A unit of deluxe gives a profit of 8k Dkk.

The grinding and polishing times in terms of hours per week for a unit of each type of product are given below:

	Standard	Deluxe
(Machine 1) Grinding	5	10
(Machine 2) Polishing	4	4

Grinding capacity: 60 hours per week Polishing capacity: 40 hours per week **Q**: How much of each product, standard and deluxe, should we produce to maximize the profit?

Mathematical Model

Course Introduction Introduction Solving LP Problems

Decision Variables

 $x_1 \ge 0$ units of product standard $x_2 \ge 0$ units of product deluxe

Object Function

max $6x_1 + 8x_2$ maximize profit

Constraints

 $5x_1 + 10x_2 \le 60$ Grinding capacity $4x_1 + 4x_2 \le 40$ Polishing capacity

Mathematical Model

Machines/Materials A and B Products 1 and 2

Graphical Representation:

a _{ij}	1	2	bi
Α	5	10	60
В	4	4	40
Сј	6	8	

Resource Allocation - General Model

Notation

$$\begin{array}{ll} \max & \sum\limits_{j=1}^{n} c_{j} x_{j} \\ & \sum\limits_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \ i=1,\ldots,m \\ & x_{j} \geq 0, \ j=1,\ldots,n \end{array}$$

In Matrix Form

$$c^{T} = \begin{bmatrix} c_{1} & c_{2} & \dots & c_{n} \end{bmatrix} \qquad \max \begin{array}{c} z = c^{T} x \\ Ax \leq b \\ x \geq 0 \end{array}$$
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots \\ a_{31} & a_{32} & \dots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

25

Our Numerical Example

Course Introduction Introduction Solving LP Problems

$$\max \sum_{\substack{j=1 \\ j=1}^{n} c_j x_j}^{n} c_j x_j \le b_i, \quad i = 1, \dots, m$$
$$x_j \ge 0, \quad j = 1, \dots, n$$

 $\begin{array}{rll} \max \ c^{T}x \\ Ax \ \leq \ b \\ x \ \geq \ 0 \end{array}$

 $x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

max
$$\begin{bmatrix} 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 $\begin{bmatrix} 5 & 10 \\ 4 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 60 \\ 40 \end{bmatrix}$
 $x_1, x_2 \geq 0$

Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction Resource Allocation Diet Problem Duality

3. Solving LP Problems Fourier-Motzkin method

The Diet Problem (Blending Problems)

- Select a set of foods that will satisfy a set of daily nutritional requirement at minimum cost.
- Motivated in the 1930s and 1940s by US army.
- Formulated as a linear programming problem by George Stigler
- First linear programming problem
- (programming intended as planning not computer code)

min cost/weight subject to nutrition requirements:

> eat enough but not too much of Vitamin A eat enough but not too much of Sodium eat enough but not too much of Calories

. . .

Course Introduction

Solving LP Problems

Suppose there are:

- ▶ 3 foods available, corn, milk, and bread, and
- there are restrictions on the number of calories (between 2000 and 2250) and the amount of Vitamin A (between 5000 and 50,000)

Food	Cost per serving	Vitamin A	Calories
Corn	\$0.18	107	72
2% Milk	\$0.23	500	121
Wheat Bread	\$0.05	0	65

The Mathematical Model

Parameters (given data)

- F = set of foods
- N = set of nutrients
- a_{ij} = amount of nutrient j in food i, $\forall i \in F$, $\forall j \in N$
- c_i = cost per serving of food $i, \forall i \in F$
- F_{mini} = minimum number of required servings of food $i, \forall i \in F$
- F_{maxi} = maximum allowable number of servings of food $i, \forall i \in F$
- N_{minj} = minimum required level of nutrient $j, \forall j \in N$
- N_{maxj} = maximum allowable level of nutrient $j, \forall j \in N$

Decision Variables

 x_i = number of servings of food *i* to purchase/consume, $\forall i \in F$

The Mathematical Model

Objective Function: Minimize the total cost of the food

 $\mathsf{Minimize}\sum_{i\in F}c_ix_i$

Constraint Set 1: For each nutrient $j \in N$, at least meet the minimum required level

$$\sum_{i\in F} a_{ij}x_i \geq N_{minj}, \forall j \in N$$

Constraint Set 2: For each nutrient $j \in N$, do not exceed the maximum allowable level.

$$\sum_{i \in F} a_{ij} x_i \le N_{maxj}, \forall j \in N$$

Constraint Set 3: For each food $i \in F$, select at least the minimum required number of servings

 $x_i \geq F_{mini}, \forall i \in F$

Constraint Set 4: For each food $i \in F$, do not exceed the maximum allowable number of servings.

 $x_i \leq F_{maxi}, \forall i \in F$

The Mathematical Model

Course Introduction Introduction Solving LP Problems

system of equalities and inequalities

$$\begin{array}{ll} \min & \sum_{i \in F} c_i x_i \\ \sum_{i \in F} a_{ij} x_i \geq N_{minj}, & \forall j \in N \\ \sum_{i \in F} a_{ij} x_i \leq N_{maxj}, & \forall j \in N \\ & x_i \geq F_{mini}, & \forall i \in F \\ & x_i \leq F_{maxi}, & \forall i \in F \end{array}$$

- ► The linear programming model consisted of 9 equations in 77 variables
- ► Stigler, guessed an optimal solution using a heuristic method
- In 1947, the National Bureau of Standards used the newly developed simplex method to solve Stigler's model.
 It took 9 clerks using hand-operated desk calculators 120 man days to solve for the optimal solution

The original instance: http://www.gams.com/modlib/libhtml/diet.htm

AMPL Model

AMPL Model

Course Introduction Introduction Solving LP Problems

diet.dat

data;

```
set NUTR := A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH
MTL SPG TUR;
```

```
param: cost f _ min f _ max :=
    BEEF 3.19 0 100
    CHK 2.59 0 100
    FISH 2.29 0 100
    HAM 2.89 0 100
    MCH 1.89 0 100
    MTL 1.99 0 100
    SPG 1.99 0 100
    TUR 2.49 0 100;

param: n min n max :=
```

A 700 10000 C 700 10000 B1 700 10000 B2 700 10000 :

%

```
param amt (tr):

A C B1 B2 :=

BEEF 60 20 10 15

CHK 8 0 20 20

FISH 8 10 15 10

HAM 40 40 35 10

MCH 15 35 15 15

MTL 70 30 15 15

SPG 25 50 25 15

TUR 60 20 15 10 ;
```

Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction

Resource Allocation Diet Problem Duality

3. Solving LP Problems Fourier-Motzkin method

Duality

Resource Valuation problem: Determine the value of the raw materials on hand such that: The company must be willing to sell the raw materials should an outside firm offer to buy them at a price consistent with the market

- z_i value of a unit of raw material i
- $\sum_{i=1}^{m} b_i z_i$ opportunity cost (cost of having instead of selling)
 - ρ_i prevailing unit market value of material *i*
 - σ_j prevailing unit product price

Goal is to minimize the lost opportunity cost

$$\min \sum_{i=1}^{m} b_i z_i$$

$$z_i \ge \rho_i, \quad i = 1 \dots m$$

$$\sum_{i=1}^{m} z_i a_{ij} \ge \sigma_j, \quad j = 1 \dots n$$
(1)
(2)
(3)

(2) and (3) otherwise contradicting market

Let

 $y_i = z_i - \rho_i$

markup that the company would make by reselling the raw material instead of producing.

$$\min \sum_{i=1}^{m} y_i b_i + \sum_{j=1}^{n} c_j x_j$$

$$\sum_{i=1}^{m} y_i a_{ij} \ge c_j, \quad j = 1 \dots n$$

$$y_i \ge 0, \quad i = 1 \dots m$$

$$\max \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m$$

$$x_j \ge 0, \quad j = 1, \dots, n$$

Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction

Resource Allocation Diet Problem Duality

3. Solving LP Problems

Fourier-Motzkin method

In Matrix Form

$$c^{T} = \begin{bmatrix} c_{1} & c_{2} & \dots & c_{n} \end{bmatrix} \qquad \max \begin{array}{c} z = c^{T} x \\ Ax = b \\ x \ge 0 \end{array}$$

$$A = \begin{bmatrix} a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \\ a_{31} & a_{32} & \dots & a_{mn} \end{bmatrix}, x = \begin{bmatrix} x_2 \\ \vdots \\ x_n \end{bmatrix}, b = \begin{bmatrix} b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Notation

- ▶ N natural numbers, Z integer numbers, Q rational numbers, R real numbers
- ▶ column vector and matrices scalar product: y^Tx = ∑ⁿ_{i=1} y_ix_i
- linear combination

$$\begin{aligned} x \in \mathbb{R}^k \\ x_1, \dots, x_k \in \mathbb{R} \\ \lambda = (\lambda_1, \dots, \lambda_k)^T \in \mathbb{R}^k \end{aligned} \qquad x = \sum_{i=1}^k \lambda_i x_i$$

$$\begin{array}{c} \lambda \geq 0 \\ \lambda^T 1 = 1 \quad \left(\sum_{i=1}^k \lambda_i = 1\right) \\ \lambda \geq 0 \text{ and } \lambda^T 1 = 1 \end{array}$$

conic combination affine combination convex combination

Linear Programming

Abstract mathematical model:

Decision Variables (quantity) eg. x_1 units of 1, x_2 units of 2

Criterion (discriminate among solutions) eg. max profit: $6x_1 + 8x_2$

Constraints (limitations on resources) eg.

 $5x_1 + 10x_2 \le 60$; $4x_1 + 4x_2 \le 40$; $x_1 \ge 0$; $x_2 \ge 0$

objective func.max / min $c^T \cdot x$ $c \in \mathbb{R}^n$ constraints $A \cdot x \geq b$ $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ $x \geq 0$ $x \in \mathbb{R}^n, 0 \in \mathbb{R}^n$

Essential features of a Linear program:

- 1. continuity (later, integrality)
- 2. linearity \rightsquigarrow proportionality + additivity
- 3. certainty of parameters

Notions of Computer Science

Algorithm: a finite, well-defined sequence of operations to perform a calculation

Algorithm: LargestNumber

return largest

Running time: proportional to number of operations, eg O(n)

Growth Functions

NP-hard problems: bad if we have to solve them, good for cryptology

History of Linear Programming (LP)

- Origins date back to Newton, Leibnitz, Lagrange, etc.
- In 1827, Fourier described a variable elimination method for systems of linear inequalities, today often called Fourier-Moutzkin elimination (Motzkin, 1937). It can be turned into an LP solver but inefficient.
- In 1932, Leontief (1905-1999) Input-Output model to represent interdependencies between branches of a national economy (1976 Nobel prize)
- In 1939, Kantorovich (1912-1986): Foundations of linear programming (Nobel prize with Koopmans on LP, 1975)
- ► The math subfield of Linear Programming was created by George Dantzig, John von Neumann (Princeton), and Leonid Kantorovich in the 1940s.
- In 1947, Dantzig (1914-2005) invented the (primal) simplex algorithm working for the US Air Force at the Pentagon. (program=plan)

Course Introduction Introduction Solving LP Problems

History of LP (cntd)

- ► In 1954, Lemke: dual simplex algorithm, In 1954, Dantzig and Orchard Hays: revised simplex algorithm
- ► In 1958, Integer Programming was born with cutting planes by Gomory and branch and bound
- In 1970, Victor Klee and George Minty created an example that showed that the classical simplex algorithm has exponential worst-case behaviour.
- In 1979, L. Khachain found a new efficient algorithm for linear programming. It was terribly slow. (Ellipsoid method)
- In 1984, Karmarkar discovered yet another new efficient algorithm for linear programming. It proved to be a strong competitor for the simplex method. (Interior point method)

History of Optimization

- In 1951, Nonlinear Programming began with the Karush-Kuhn-Tucker Conditions
- ▶ In 1952, Commercial Applications and Software began
- ► In 1950s, Network Flow Theory began with the work of Ford and Fulkerson.
- ▶ In 1955, Stochastic Programming began
- ▶ In 1958, Integer Programming began by R. E. Gomory.
- ▶ In 1962, Complementary Pivot Theory

Outline

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction

Resource Allocation Diet Problem Duality

3. Solving LP Problems Fourier-Motzkin method

Fourier Motzkin elimination method

Has $Ax \leq b$ a solution? (Assumption: $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^n$) Idea:

- transform the system into another by eliminating some variables such that the two systems have the same solutions over the remaining variables.
- 2. reduce to a system of constant inequalities that can be easily decided

Let x_r be the variable to eliminate Let $M = \{1 \dots m\}$ index the constraints For a variable j let partition the rows of the matrix in

 $N = \{i \in M \mid a_{ij} < 0\} \\ Z = \{i \in M \mid a_{ij} = 0\} \\ P = \{i \in M \mid a_{ij} > 0\}$

 $\begin{cases} x_r \ge b_{ir} - \sum_{k=1}^{r-1} a_{ik} x_k \\ x_r \le b_{ir} - \sum_{k=1}^{r-1} a_{ik} x_k \\ \text{all other constraints} (i \in Z) \end{cases}$

$$\begin{cases} x_r \ge A_i(x_1, \dots, x_{r-1}), & i \in N \\ x_r \le B_i(x_1, \dots, x_{r-1}), & i \in P \\ \text{all other constraints}(i \in Z) \end{cases}$$

Hence the original system is equivalent to

 $\begin{cases} \max\{A_i(x_1,\ldots,x_{r-1}), i \in N\} \le x_r \le \min\{B_i(x_1,\ldots,x_{r-1}), i \in P\} \\ \text{all other constraints}(i \in Z) \end{cases}$

which is equivalent to

$$\left(egin{array}{ll} A_i(x_1,\ldots,x_{r-1})\leq B_j(x_1,\ldots,x_{r-1}) & i\in N, j\in P \ all other constraints(i\in Z) \end{array}
ight.$$

we eliminated x_r but:

 $\begin{cases} |N| \cdot |P| \text{ inequalities} \\ |Z| \text{ inequalities} \end{cases}$

after d iterations if |P| = |N| = n/2 exponential growth: $1/4(n/2)^{2^d}$

Example

 x_2 variable to eliminate $N = \{2, 5, 6\}, Z = \{3\}, P = \{1, 4\}$ $|Z \cup (N \times P)| = 7$ constraints Summary

Course Introduction Introduction Solving LP Problems

1. Course Introduction

2. Introduction

Resource Allocation Diet Problem Duality

3. Solving LP Problems Fourier-Motzkin method