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Duality
More on Network FlowsShortest Path - Dual LP

z = min
∑
ij∈A

cijxij∑
j :ij∈A

xij −
∑

j :ji∈A

xji = −1 for i = s (πs)

∑
j :ij∈A

xji −
∑

j :ji∈A

xij = 0 ∀i ∈ V \ {s, t} (πi )∑
j :ij∈A

xij −
∑

j :ji∈A

xji = 1 for i = t (πt)

xij ≥ 0 ∀ij ∈ A

Dual problem:

gLP = max πt − πs

πj − πi ≤ cij ∀ij ∈ A

Hence, the shortest path can be found by potential values πi on nodes such
that πs = 0, πt = z and πj − πi ≤ cij for ij ∈ A
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More on Network FlowsMaximum (s, t)-Flow

Adding a backward arc from t to s:

z = max xts∑
j :ij∈A

xij −
∑

j :ji∈A

xji = 0 ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij )

xij ≥ 0 ∀ij ∈ A

Dual problem:

gLP = min
∑
ij∈A

uijwij

πi − πj + wij ≥ 0 ∀ij ∈ A

πt − πs ≥ 1

wij ≥ 0 ∀ij ∈ A
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gLP = min
∑
ij∈A

uijwij (1)

πi − πj + wij ≥ 0 ∀ij ∈ A (2)
πt − πs ≥ 1 (3)

wij ≥ 0 ∀ij ∈ A (4)

I Without (3) all potentials would go to 0.
I Keep w low because of objective function
I Keep all potentials low  (3) πs = 1, πt = 0
I Cut C : on left =1 on right =0. Where is the transition?
I Vars w identify the cut  πj − πi + wij ≥ 0  wij = 1

wij =

{
1 if ij ∈ C
0 otherwise

for those arcs that minimize the cut capacity
∑

ij∈A uijwij

I Complementary slackness: wij = 1 =⇒ xij = uij
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More on Network Flows

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

min
X

 ∑
ij∈A:i∈X ,j 6∈X

uij : s ∈ X ⊂ V \ {t}


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Duality
More on Network FlowsMin Cost Flow - Dual LP

min
∑
ij∈A

cijxij∑
j :ij∈A

xij −
∑

j :ji∈A

xji = bi ∀i ∈ V (πi )

xij ≤ uij ∀ij ∈ A (wij )

xij ≥ 0 ∀ij ∈ A

Dual problem:

(1) max
∑

i∈V biπi −
∑

ij∈E uijwij

(2) −cij − πi + πj ≤ wij ∀ij ∈ E
(3) wij ≥ 0 ∀ij ∈ A
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More on Network Flows

I define reduced costs c̄ij = cij + πj − πi , hence (2) becomes −c̄ij ≤ wij

I ue =∞ then we = 0 (from obj. func) and c̄ij ≥ 0 (optimality condition)

I ue <∞ then we ≥ 0 and we ≥ −c̄ij then we = max{0,−c̄ij}, hence we
is determined by others and may be skipped

I Complementary slackness
(at optimality: each primal variable × the corresponding dual slack must
be equal 0, ie, xe(c̄e + we) = 0;
each dual variable × the corresponding primal slack must be equal 0, ie,
we(xe − ue) = 0)

I xe > 0 then −c̄e = we = max{0, c̄e},
xe > 0 =⇒ −c̄e > 0 or equivalently (by negation) c̄e < 0 =⇒ xe = 0

I we > 0 then xe = ue

−c̄ > 0 =⇒ xe = ue or equivalently −c̄ > 0 =⇒ xe = ue

Hence:
c̄e < 0 then xe = ue 6=∞
c̄e > 0 then xe = 0
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Duality
More on Network FlowsResidual Network

Residual Network N(x):
how flow excess can be moved in G given that a flow x already exists
replace arc ij ∈ N with arcs:

residual capacity cost
ij : rij = uij − xij cij
ji : rji = xij −cij

(N, c , u, x) (N(x), c ′)
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Duality
More on Network FlowsMin Cost Flow Algorithms

Optimality conditions: Let x be feasible flow in N(V ,A, l , u, b) then x is min
cost flow in N iff N(x) contains no directed cycle of negative cost.

I Cycle canceling algorithm with Bellman Ford Moore for negative cycles
O(nm2UC ), U = max |ue |, C = max |ce |

I Build up algorithms O(n2mM), M = max |b(v)|
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Duality
More on Network FlowsMinimum spanning tree

Definition

Given a graph G = (V ,E )

I a forest is a subgraph G ′ = (V ,E ′) containing no cycles
I a tree is a subgraph G ′ = (V ,E ′) that is a forest and is connected (∃ a

(uv)-path ∀u, v ∈ V )

Proposition

A graph G = (V ,E ) is a tree iff
I it is a forest containing exactly n − 1 edges
I it is an edge minimal connected graph spanning V
I it contains a unique path between every pair of nodes of V
I the addition of an edge not in E creates a unique cycle.

Solvable via greedy algorithm (Kruskall)
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min
∑
e∈E

cexe (5)∑
e∈E

xe = n − 1 (6)∑
e∈E(S)

xe ≤ |S | − 1 for 2 ≤ |S | ≤ n − 1 (7)

xe ≥ 0 for e ∈ E (8)

x ∈ Z|E | (9)

Theorem
The convex hull of the incidence vectors of the forests in a graph is given by
the constraints (2)-(3)
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More on Network FlowsNetwork simplex

I Improved version of the simplex method for network flows (still not
polynomial but performs well in practice)

I it goes through same basic steps at each iteration:
finding basic variable + determining leaving variable + solving for the
new basis

I executes these steps exploiting network structure without needing a
simplex tableau

I Key idea: network representation of basic feasible solutions
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I in min cost flow formulation one of the node constraints is redundant
(summing all these constraints yields zero on both sides -

∑
i bi = 0)

I with n − 1 non redundant node constraints, we have just n − 1 basic
variables for a basic solution
each basic variable xij represents the flow though arc ij : basic arcs

I basic arcs never form undirected cycles...

I hence they form a spanning tree
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More on Network FlowsMax Flow Algorithms

Optimality Condition

I Ford Fulkerson augmenting path algorithm O(m|x∗|)

I Edmonds-Karp algorithm (augment by shortest path) in O(nm2)

I Dinic algorithm in layered networks O(n2m)

I Karzanov’s push relabel O(n2m)

17
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More on Network FlowsMatching Algorithms

Matching: M ⊆ E of pairwise non adjacent edges

I bipartite graphs
I arbitrary graphs

I cardinality (max or perfect)
I weighted

Assignment problem ≡ min weighted perfect bipartite matching ≡ special
case of min cost flow
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bipartite cardinality

Theorem
The cardinality of a max matching in a bipartite graph equals the value of a
maximum (s, t)-flow in Nst .

 Dinic O(
√
nm)

Theorem (Optimality condition (Berge))

A matching M in a graph G is a maximum matching iff G contains no
M-augmenting path.

 augmenting path O(min(|U|, |V |),m)

bipartite weighted
build up algorithm O(n3)
bipartite weighted: Hungarian method O(n3)

minimum weight perfect matching
Edmonds O(n3)

19



Duality
More on Network Flows

Theorem (Hall’s (marriage) theorem)

A bipartite graph B = (X ,Y ,E ) has a matching covering X iff:

|N(U)| ≥ |U| ∀U ⊆ X

Theorem (König, Egeavary theorem)

Let B = (X ,Y ,E ) be a bipartite graph. Let M∗ be the maximum matching
and V ∗ the minimum vertex cover:

|M∗| = |V ∗|
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Duality
More on Network FlowsILP in Excel

A company produces the same product at two different factories (A and B)
and then the product must be shipped to two warehouses, where either
factory can supply either warehouse. The distribution network is shown below
where C is a distribution center. There are costs and bounds on the amount
of product to ship through the connections

A

−50

B

−40

D

30

E

60

C

0

0//10, 2

0//∞, 9

0//∞, 4

0//80, 1
0//∞, 3

0//∞, 20//∞, 3

What problem is it? Transhippment problem (ie, min cost flow)
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See file mincost.xlsx
If Solver is not there, click Tools, select Add-Ins, Solver Add-in and OK.
Then Tools, Solve

What if
∑

b(v) 6= 0?
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