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Cutting Plane Algorithms
Branch and BoundCommon Comments to Assignment 1

I do not repeat the text of the assignment
I do not report source code
I do not make statements without evidence supporting them
I summarize and comment the results/plots
I “IP is hard because more basic solutions must be seen“ Not true
I ≤ 10 wrong, ≤ 9 right
I several reports did not presented how many assets are to be bought in

task 1 and 2
I meaning of plot in task 3 missing: negative value indicate a loss
I try to use single letter for name of variables
I use ≤, not <=
I < is not allowed in LP
I x [t] is programming language, xt is math language
I f (t) is a function, not an indexed variable/parameter
I define all variables, eg, y ∈ R
I use precise language and focus your description on the important aspects
I ∀t must be completed by the domain of t, eg, t = 1..3, t ∈ T
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Cutting Plane Algorithms
Branch and BoundCommon Comments to Assignment 1

I “IP requires exponential run time“, true only in worst case
I print your reports in double sided papers
I comments on the plot arguing that there is a linear or expoenntial

growth do not have much sense
I In LaTeX use \begin{array} or \begin{align} to write your models
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Cutting Plane Algorithms
Branch and BoundValid Inequalities

I IP: z = max{cT x : x ∈ X},X = {x : Ax ≤ b, x ∈ Zn
+}

I Proposition: conv(X ) = {x : Ãx ≤ b̃, x ≥ 0} is a polyhedron

I LP: z = max{cT x : Ãx ≤ b̃, x ≥ 0} would be the best formulation

I Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

ax ≤ b is a valid inequality for X ⊆ Rn if ax ≤ b ∀x ∈ X

Which are useful inequalities? and how can we find them?
How can we use them?
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Cutting Plane Algorithms
Branch and BoundExample: Pre-processing

I X = {(x , y) : x ≤ 999y ; 0 ≤ x ≤ 5, y ∈ B1}

x ≤ 5y

I X = {x ∈ Zn
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}

2x1 + 2x2 + x3 + x4 ≥
13
11

x1 +
20
11

x2 + x3 +
6
11

x4 ≥
72
11

= 6 +
6
11

2x1 + 2x2 + x3 + x4 ≥ 7

I Capacitated facility location:∑
i∈M

xij ≤ bjyj ∀j ∈ N xij ≤ bjyj∑
j∈N

xij = ai ∀i ∈ M xij ≤ ai

xij ≥ 0, yj ∈ Bn xij ≤ min{ai , bj}yj
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Cutting Plane Algorithms
Branch and BoundChvátal-Gomory cuts

I X ∈ P ∩ Zn
+, P = {x ∈ Rn

+ : Ax ≤ b}, A ∈ Rn×m

I u ∈ Rn
+, {a1, a2, . . . an} columns of A

CG procedure to construct valid inequalities

1)
n∑

j=1

uajxj ≤ ub valid: u ≥ 0

2)
n∑

j=1

buajcxj ≤ ub valid: x ≥ 0 and
∑
buajcxj ≤

∑
uajxj

3)
n∑

j=1

buajcxj ≤ bubc valid for X since x ∈ Zn

Theorem
Every valid inequality for X can be obtained by applying the CG procedure a
finite number of times

However often the family of valid inequalities is large and makes the LP hard
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Cutting Plane Algorithms
Branch and BoundCutting Plane Algorithms

I X ∈ P ∩ Zn
+

I a family of valid inequalities F : aT x ≤ b, (a, b) ∈ F for X
I we do not find them all a priori, only interested in those close to

optimum

Cutting Plane Algorithm
Init.: t = 0,P0 = P

Iter. t: Solve z̄ t = max{cT x : x ∈ Pt}
let x t be an optimal solution
if x t ∈ Zn stop, x t is opt to the IP
if x t 6∈ Zn solve separation problem for x t and F
if (at , bt) is found with atx t > bt that cuts off x t

Pt+1 = P ∩ {x : aix ≤ bi , i = 1, . . . , t}

else stop (Pt is in any case an improved formulation)
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Cutting Plane Algorithms
Branch and BoundGomory’s fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts
I max{cT x : Ax = b, x ≥ 0, x ∈ Zn}
I Solve LPR to optimality I ĀN = A−1

B AN 0 b̄

c̄B c̄N(≤ 0) 1 −d̄

 xu = b̄u −
∑
j∈N

āujxj , u ∈ B

z = d̄ +
∑
j∈N

c̄jxj

I If basic optimal solution to LPR is not integer then ∃ some row u:
b̄u 6∈ Z1.
The Chvatál-Gomory cut applied to this row is:

xBu +
∑
j∈N

bāujcxj ≤ bb̄uc

(Bu is the index in the basis B corresponding to the row u) (cntd)
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Cutting Plane Algorithms
Branch and Bound

I Eliminating xBu = b̄u −
∑
j∈N

āujxj in the CG cut we obtain:

∑
j∈N

(āuj − bāujc︸ ︷︷ ︸
0≤fuj<1

)xj ≥ b̄u − bb̄uc︸ ︷︷ ︸
0<fu<1∑

j∈N

fujxj ≥ fu

fu > 0 or else u would not be row of fractional solution. It implies that
x∗ in which x∗N = 0 is cut out!

I Moreover: when x is integer, since all coefficient in the CG cut are
integer the slack variable of the cut is also integer:

s = −fu +
∑
j∈N

fujxj

(theoretically it terminates after a finite number of iterations, but in practice
not successful.)
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Cutting Plane Algorithms
Branch and BoundExample

max x1 + 4x2
x1 + 6x2 ≤ 18
x1 ≤ 3

x1, x2 ≥ 0
x1, x2integer x1 + 6x2 = 18

x1 + 4x2 = 2

x1 = 3

x1

x2

| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+----+----+----+----|
| | 1 | 6 | 1 | 0 | 0 | 18 |
| | 1 | 0 | 0 | 1 | 0 | 3 |
|---+----+----+----+----+----+----|
| | 1 | 4 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+------+------+----+------|
| | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |
| | 1 | 0 | 0 | 1 | 0 | 3 |
|---+----+----+------+------+----+------|
| | 0 | 0 | -2/3 | -1/3 | 1 | -13 |

x2 = 5/2, x1 = 3
Optimum, not integer
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Cutting Plane Algorithms
Branch and Bound

I We take the first row:
| | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |

I CG cut
∑

j∈N fujxj ≥ fu  1
6x3 + 5

6x4 ≥ 1
2

I Let’s see that it leaves out x∗: from the CG proof:

1/6 (x1 + 6x2 ≤ 18)
5/6 (x1 ≤ 3)

x1 + x2 ≤ 3 + 5/2 = 5.5

since x1, x2 are integer x1 + x2 ≤ 5

I Let’s see how it looks in the space of the original variables: from the first
tableau:

x3 = 18− 6x2 − x1
x4 = 3− x1

1
6

(18− 6x2 − x1) +
5
6

(3− x1) ≥ 1
2

 x1 + x2 ≤ 5

14



Cutting Plane Algorithms
Branch and Bound

I Graphically:

x1 + 4x2 = 2

x1 + x2 = 5

x1 + 6x2 = 18

x1 = 3

x1

x2

I Let’s continue:

| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+------+------+----+----+------|
| | 0 | 0 | -1/6 | -5/6 | 1 | 0 | -1/2 |
| | 0 | 1 | 1/6 | -1/6 | 0 | 0 | 5/2 |
| | 1 | 0 | 0 | 1 | 0 | 0 | 3 |
|---+----+----+------+------+----+----+------|
| | 0 | 0 | -2/3 | -1/3 | 0 | 1 | -13 |

We need to apply dual-simplex
(will always be the case, why?)

ratio rule: min | cjaij
|
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Cutting Plane Algorithms
Branch and Bound

I After the dual simplex iteration:

| | x1 | x2 | x3 | x4 | x5 | -z | b |
|---+----+----+------+----+------+----+-------|
| | 0 | 0 | 1/5 | 1 | -6/5 | 0 | 3/5 |
| | 0 | 1 | 1/5 | 0 | -1/5 | 0 | 13/5 |
| | 1 | 0 | -1/5 | 0 | 6/5 | 0 | 12/5 |
|---+----+----+------+----+------+----+-------|
| | 0 | 0 | -3/5 | 0 | -2/5 | 1 | -64/5 |

We can choose any of the three
rows.

Let’s take the third: CG cut:
4
5x3 +

1
5x5 ≥ 2

5

I In the space of the original variables:

4(18− x1 − 6x2) + (5− x1 − x2) ≥ 2
x1 + 5x2 ≤ 15

x1

x2

I ...
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Cutting Plane Algorithms
Branch and BoundBranch and Bound

I Consider the problem z = max{cT x : x ∈ S}

I Divide and conquer: let S = S1 ∪ . . . ∪ Sk be a decomposition of S into
smaller sets, and let zk = max{cT x : x ∈ Sk} for k = 1, . . . ,K . Then
z = maxk zk

For instance if S ⊆ {0, 1}3 the enumeration tree is:

S

S0

S00

S000

x3 = 0

S001

x2 = 0

S01

S010 S011

x1 = 0

S1

S10

S100 S101

S11

S110 S111

x1 = 1
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Cutting Plane Algorithms
Branch and BoundBounding

I Let zk be an upper bound on zk

I Let zk be an lower bound on zk

I (zk ≤ zk ≤ zk)

I z = maxk zk is an upper bound on z

I z = maxk zk is a lower bound on z
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Cutting Plane Algorithms
Branch and Bound

27
13

20
20

25
15

z = 25
z = 20
pruned by optimality

27
13

20
18

26
21

z = 26
z = 21
pruned by bounding

40
−∞

24
13

37
−∞

z = 37
z = 13
nothing to prune
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Cutting Plane Algorithms
Branch and BoundExample

max x1 + 2x2
x1 + 4x2 ≤ 8
4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer
x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1

x2

I Solve LP
| | x1 | x2 | x3 | x4 | -z | b |
|---+----+----+----+----+----+---|
| | 1 | 4 | 1 | 0 | 0 | 8 |
| | 4 | 1 | 0 | 1 | 0 | 8 |
|---+----+----+----+----+----+---|
| | 1 | 2 | 0 | 0 | 1 | 0 |

| | x1 | x2 | x3 | x4 | -z | b |
|--------------+----+------+----+------+----+----|
| I’=I-II’ | 0 | 15/4 | 1 | -1/4 | 0 | 6 |
| II’=1/4II | 1 | 1/4 | 0 | 1/4 | 0 | 2 |
|--------------+----+------+----+------+----+----|
| III’=III-II’ | 0 | 7/4 | 0 | -1/4 | 0 | -2 |
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Cutting Plane Algorithms
Branch and Bound

I continuing

| | x1 | x2 | x3 | x4 | -z | b |
|----------------+----+----+-------+-------+----+---------|
| I’=4/15I | 0 | 1 | 4/15 | -1/15 | 0 | 24/15 |
| II’=II-1/4I’ | 1 | 0 | -1/15 | 4/15 | 0 | 24/15 |
|----------------+----+----+-------+-------+----+---------|
| III’=III-7/4I’ | 0 | 0 | -7/15 | -3/5 | 1 | -2-14/5 |

x2 = 1 + 3/5 = 1.6
x1 = 8/5
The optimal solution
will not be more than
2 + 14/5 = 4.8

I Both variables are fractional, we pick one of the two:

4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x1 = 1
x2

x1
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Cutting Plane Algorithms
Branch and Bound

I Let’s consider first the left branch:
| | x1 | x2 | x3 | x4 | x5 | b | -z |
|---+----+----+-------+-------+----+---+-------|
| | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| | 0 | 1 | 4/15 | -1/15 | 0 | 0 | 24/15 |
| | 1 | 0 | -1/15 | 4/15 | 0 | 0 | 24/15 |
|---+----+----+-------+-------+----+---+-------|
| | 0 | 0 | -7/15 | -3/5 | 0 | 1 | -24/5 |

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|----------+----+----+-------+-------+----+---+-------|
| I’=I-III | 0 | 0 | 1/15 | -4/15 | 1 | 0 | -9/15 |
| | 0 | 1 | 4/15 | -1/15 | 0 | 0 | 24/15 |
| | 1 | 0 | -1/15 | 4/15 | 0 | 0 | 24/15 |
|----------+----+----+-------+-------+----+---+-------|
| | 0 | 0 | -7/15 | -3/5 | 0 | 1 | -24/5 |

| | x1 | x2 | x3 | x4 | x5 | b | -z |
|---+----+----+--------+----+-------+---+--------|
| | 0 | 0 | -1/4 | 1 | -15/4 | 0 | 9/4 |
| | 0 | 1 | 15/60 | 0 | -1/4 | 0 | 7/4 |
| | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
|---+----+----+--------+----+-------+---+--------|
| | 0 | 0 | -37/60 | 0 | -9/4 | 1 | -90/20 |

always a b term
negative after
branching:
b1 = bb̄3c
b̄1 = bb̄3c − b3 < 0

Dual simplex:
minj | cj

ai j
|
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Cutting Plane Algorithms
Branch and Bound

I Let’s branch again

4.8

4.5

B

x2 ≤ 1

A

x2 ≥ 2

x1 ≤ 1

C

x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8
x1 + 2x2 = 1

x2

x1

We have three open problems. Which one we choose next?
Let’s take A.
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Cutting Plane Algorithms
Branch and Bound

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|---+----+----+--------+----+-------+----+---+------|
| | 0 | -1 | 0 | 0 | 0 | 1 | 0 | -2 |
| | 0 | 0 | -1/4 | 1 | -15/4 | | 0 | 9/4 |
| | 0 | 1 | 15/60 | 0 | -1/4 | | 0 | 7/4 |
| | 1 | 0 | 0 | 0 | 1 | | 0 | 1 |
|---+----+----+--------+----+-------+----+---+------|
| | 0 | 0 | -37/60 | 0 | -9/4 | | 1 | -9/2 |

| | x1 | x2 | x3 | x4 | x5 | x6 | b | -z |
|-------+----+----+--------+----+-------+----+---+------|
| III+I | 0 | 0 | 1/4 | 0 | -1/4 | 1 | 0 | -1/4 |
| | 0 | 0 | -1/4 | 1 | -15/4 | | 0 | 9/4 |
| | 0 | 1 | 15/60 | 0 | -1/4 | | 0 | 7/4 |
| | 1 | 0 | 0 | 0 | 1 | | 0 | 1 |
|-------+----+----+--------+----+-------+----+---+------|
| | 0 | 0 | -37/60 | 0 | -9/4 | | 1 | -9/2 |

continuing we find:
x1 = 0
x2 = 2
OPT = 4
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Cutting Plane Algorithms
Branch and Bound

The final tree:

4.8
−∞

4.5
−∞

3
3

x1=1
x2=1

x2 ≤ 1

4
4

x1=0
x2=2

x2 ≥ 2

x2 ≤ 1

2
2

x1=2
x2=0

x1 ≥ 2

The optimal solution is 4.

26



Cutting Plane Algorithms
Branch and BoundPruning

Pruning:

1. by optimality: zk = max{cT x : x ∈ Sk}

2. by bound zk ≤ z
Example:

5.8
−∞

4.5
−∞

4
4

2.3
−∞

3. by infeasibility Sk = ∅
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Cutting Plane Algorithms
Branch and BoundB&B Components

Bounding:
1. LP relaxation
2. Lagrangian relaxation
3. Combinatorial relaxation
4. Duality

Branching:

S1 = S ∩ {x : xj ≤ bx̄jc}
S2 = S ∩ {x : xj ≥ dx̄je}

thus the current optimum is not feasible either in S1 or in S2.
Which variable to choose?
Eg: Most fractional variable argmaxj∈C min{fj , 1− fj}
Choosing Node: Examination: nodes to be examined, active (or open):

I Depth First Search (a good primal sol. is good for pruning + easier to
reoptimize by just adding a new constraint)

I Best Bound First: (eg. largest upper: zs = maxk zk)
I Mixed strategies
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Cutting Plane Algorithms
Branch and Bound

Reoptimizing: dual simplex

Updating the Incumbent: when new best feasible solution is found:

z = max{z , 4}

Store the active nodes: bounds + optimal basis (remember the revised
simplex!)
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Cutting Plane Algorithms
Branch and BoundEnhancements

I Preprocessor: constraint/problem/structure specific
tightening bounds
redundant constraints
variable fixing: eg: max{cT x : Ax ≤ b, l ≤ x ≤ u}

fix ∀aij > 0, cj < 0, xj = lj ; aij < 0, cj > 0, xj = uj

I Priorities: establish the next variable to branch

I Special ordered sets SOS (or generalized upper bound GUB)
k∑

j=1

xj = 1 xj ∈ {0, 1}

instead of: S0 = S ∩ {x : xj = 0} and S1 = S ∩ {x : xj = 1}
{x : xj = 0} leaves k − 1 possibilities
{x : xj = 1} leaves only 1 possibility
hence tree unbalanced

here: S1 = S ∩ {x : xji = 0, i = 1..r} and
S2 = S ∩ {x : xji = 0, i = r + 1, .., k}, r = min{t :

∑t
i=1 x

∗
ji ≥

1
2}
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Cutting Plane Algorithms
Branch and Bound

I Cutoff value: a user-defined primal bound to pass to the system.

I Simplex strategies: simplex is good for reoptimizing but for large models
interior points methods may work best.

I Strong branching: extra work to decide more accurately on which
variable to branch:

1. choose a set C of fractional variables
2. reoptimize for each them (in case for limited iterations)
3. zD

j , z
U
j (UB of down and up branch)

j∗ = argmin
j∈C

max{zD
j , zU

j }

ie, choose variable with largest decrease of dual bound, UB
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Cutting Plane Algorithms
Branch and Bound

I If not finished after a certain time, possible reasons:
I no feasible solution is found
I the gap best feasible-dual bound is large

gap =
|Primal bound− Dual bound|

Primal bound + ε
· 100

I runs out of memory

I heuristics for finding feasible solutions (generally NP-complete problem)

I find better lower bounds if they are weak: addition of cuts, stronger
formulation, branch and cut

I Branch and cut: a B&B algorithm with cut generation at all nodes of the
tree. (instead of reoptimizing, do as much work as possible to tighten)

Cut pool: stores all cuts centrally
Store for active node: bounds, basis, pointers to constraints in the cut
pool that apply at the node

32



Cutting Plane Algorithms
Branch and BoundRelative Optimality Gap

In CPLEX:

gap =
|best node− best integer|
|best integer + 10−11|

In SCIP and MIPLIB standard:

gap =
pb − db

inf{|z |, z ∈ [db, pb]}
· 100 for a minimization problem

(if pb ≥ 0 and db ≥ 0 then pb−db
db )

if db = pb = 0 then gap = 0
if no feasible sol found or db ≤ 0 ≤ pb then the gap is not computed.
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Cutting Plane Algorithms
Branch and Bound

Last standard avoids problem of non decreasing gap if we go through zero

3186 2520 -666.6217 4096 956.6330 -667.2010 1313338 169.74%
3226 2560 -666.6205 4097 956.6330 -667.2010 1323797 169.74%
3266 2600 -666.6201 4095 956.6330 -667.2010 1335602 169.74%

Elapsed real time = 2801.61 sec. (tree size = 77.54 MB, solutions = 2)
* 3324+ 2656 -125.5775 -667.2010 1363079 431.31%

3334 2668 -666.5811 4052 -125.5775 -667.2010 1370748 431.31%
3380 2714 -666.5799 4017 -125.5775 -667.2010 1388391 431.31%
3422 2756 -666.5791 4011 -125.5775 -667.2010 1403440 431.31%
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Cutting Plane Algorithms
Branch and BoundAdvanced Techniques

We did not treat:

I LP: Dantzig Wolfe decomposition

I LP: Column generation

I LP: Delayed column generation

I IP: Branch and Price

I LP: Benders decompositions

I LP: Lagrangian relaxation
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Cutting Plane Algorithms
Branch and BoundMILP Solvers Breakthroughs

We have seen Fractional Gomory cuts.
The introduction of Mixed Integer Gomory cuts in CPLEX was the major
breakthrough of CPLEX 6.5 and produced the version-to-version speed-up given by
the blue bars in the chart below

(source: R. Bixby. Mixed-Integer Programming: It works better than you may think. 2010.
Slides on the net) 36
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