DM545
 Linear and Integer Programming

Lecture 13
 Preprocessing More IP Modelling

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Preprocessing
2. Modeling with IP, BIP, MIP

Outline

\author{

1. Preprocessing
}

2. Modeling with IP, BIP, MIP

Preprocessing rules

Consider $S=\left\{x: a_{0} x_{0}+\sum_{j=1}^{n} a_{j} x_{j} \leq b, l_{j} \leq x_{j} \leq u_{j}, j=0 . . n\right\}$

- Bounds on variables.

If $a_{0}>0$ then:

$$
x_{0} \leq\left(b-\sum_{j: a_{j}>0} a_{j} l_{j}-\sum_{j: a_{j}<0} a_{j} u_{j}\right) / a_{0}
$$

and if $a_{0}<0$ then

$$
x_{0} \geq\left(b-\sum_{j: a_{j}>0} a_{j} l_{j}-\sum_{j: a_{j}<0} a_{j} u_{j}\right) / a_{0}
$$

- Redundancy. The constraint $\sum_{j=0}^{n} a_{j} x_{j} \leq b$ is redundant if

$$
\sum_{j: a_{j}>0} a_{j} u_{j}+\sum_{j: a_{j}<0} a_{j} l_{j} \leq b
$$

- Infeasibility: $S=\emptyset$ if (swapping lower and upper bounds from previous case)

$$
\sum_{j: a_{j}>0} a_{j} l_{j}+\sum_{j: a_{j}<0} a_{j} u_{j}>b
$$

- Variable fixing. For a max problem in the form

$$
\begin{aligned}
& \quad \max \left\{c^{T} x: A x \leq b, I \leq x \leq u\right\} \\
& \text { if } \forall i=1 . . m a_{i j} \geq 0, c_{j}<0 \text { then fix } x_{j}=l_{j} \\
& \text { if } \forall i=1 . . m a_{i j}<0, c_{j}>0 \text { then fix } x_{j}=u_{j}
\end{aligned}
$$

- Integer variables:

$$
\left\lceil I_{j}\right\rceil \leq x_{j} \leq\left\lfloor u_{j}\right\rfloor
$$

- Binary variables. Probing: add a constraint, eg, $x_{2}=0$ and check what happens

Example

$$
\begin{gathered}
\max \\
I x_{1}+x_{2}-x_{3} \\
I: 5 x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
I I: \\
I I \\
I I \\
x_{1}+3 x_{2}-x_{3} \geq 9 \\
x_{1}+x_{2}+x_{3} \leq 6 \\
0 \leq x_{1} \leq 3 \\
0 \leq x_{2} \leq 1 \\
\\
x_{3} \geq 1
\end{gathered}
$$

$$
\begin{array}{rll}
I: 5 x_{1} \leq 15+2 x_{2}-8 x_{3} \leq 15+2 \cdot \overbrace{1}^{\mu_{2}}-8 \cdot \overbrace{1}^{I_{3}}=9 & \rightsquigarrow x_{1} \leq 9 / 5 \\
8 x_{3} \leq 15+2 x_{2}-5 x_{1} \leq 15+2 \cdot 1-5 \cdot 0=17 & \rightsquigarrow x_{3} \leq 17 / 8 \\
2 x_{2} \geq 5 x_{1}+8 x_{3}-15 \geq 5 \cdot 0+8 \cdot 1=-7 & \rightsquigarrow x_{2} \geq-7 / 2, x_{2} \geq 0 \\
\text { II :8x } \geq 9-3 x_{2}+x_{3} \geq 9-3+=7 & & \rightsquigarrow x_{1} \geq 7 / 8 \\
I: 8 x_{3} \geq 15+2 x_{2}-5 x_{1} \leq 15+2-5 \cdot 7 / 8=101 / 8 & \rightsquigarrow x_{3} \leq 101 / 64
\end{array}
$$

$x_{1}+x_{2}+x_{3} \leq 9 / 5+1+101 / 64<6 \quad$ Hence III is redundant

Example

$$
\begin{gathered}
\max \\
\hline I x_{1}+x_{2}-x_{3} \\
I /: \\
I x_{1}-2 x_{2}+8 x_{3} \leq 15 \\
7 / 8 \leq x_{1}+3 x_{2}-x_{3} \geq 9 \\
\\
0 \leq x_{2} \leq 1 \\
1 \leq x_{3} \leq 101 / 64
\end{gathered}
$$

Increasing x_{2} makes constraints satisfied $\rightsquigarrow x_{2}=1$
Decreasing x_{3} makes constraints satisfied $\rightsquigarrow x_{3}=1$
We are left with:

$$
\max \left\{2 x_{1}: 7 / 8 \leq x_{1} \leq 9 / 5\right\}
$$

1. if $e_{i}^{T} A=0$ then the i th row can never be satisfied

$$
\left[\begin{array}{llllll}
0 & 0 & \ldots & 1 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
\\
\hdashline 0 \cdots 0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
\vdots \\
\hdashline \cdots \\
0 \\
0
\end{array}\right]
$$

2. if $e_{i}^{T} A=e_{k}$ then $x_{k}=1$ in every feasible solution

$$
\left[\begin{array}{llllll}
0 & 0 & \ldots & 1 & \ldots & 0
\end{array}\right]\left[\begin{array}{l:l}
& \\
\hdashline 0 & \\
\hdashline & \\
\hdashline & 1
\end{array}\right]
$$

3. if $e_{t}^{T} A \geq e_{p}^{T} A$ then we can remove row t, row p dominates row t (by covering p we cover t)
$t\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & & 1\end{array}\right]$

In SPP we can remove all cols j :

$$
a_{t j}=1, a_{p j}=0
$$

4. if $\sum_{j \in S} A e_{j}=A e_{k}$ and $\sum_{j \in S} c_{j} \leq c_{k}$ then we can cover the rows by $A e_{k}$ more cheaply with S and set $x_{k}=0$
(Note, we cannot remove S if $\sum_{j \in S} c_{j} \geq c_{k}$)

Outline

1. Preprocessing

2. Modeling with IP, BIP, MIP

Modeling with IP, BIP, MIP

Iterate:

1. define variables
2. use variables to express objective function
3. use variables to express constraints
a. problems with discrete input/output (knapsack, factory planning)
b. problems with logical conditions
c. combinatorial problems (sequencing, allocation, transport, assignment, partitioning)
d. network problems

Variables

discrete quantities
$\in \mathbb{Z}^{n}$
decision variables
$\in \mathbb{B}^{n}$
indicator/auxiliary variables (for logical conditions)
$\in \mathbb{B}^{n}$
special ordered sets
$\in \mathbb{B}^{n}$
incidence vector of S
$\in \mathbb{B}^{n}$
x binary
y integer
z continuous

Logical Conditions

Linking constraints $x=0$ if $z=0, x=1$ if $z>0, \quad z \in \mathbb{R}, x \in \mathbb{B}$

$$
\begin{aligned}
& z>0 \Longrightarrow x=1 \Longrightarrow z-M x \leq 0 \\
& x=1 \Longrightarrow z>m \Longrightarrow z-m x \leq 0
\end{aligned}
$$

Logical conditions and $0-1$ variables :

$$
\begin{aligned}
& X_{1} \vee X_{2} \Longleftrightarrow x_{1}+x_{2} \geq 1 \\
& X_{1} \wedge X_{2} \Longleftrightarrow x_{1}=1, x_{2}=1 \\
& \neg X_{1} \Longleftrightarrow x_{1}=0 \text { or }\left(1-x_{1}=1\right) \\
& X_{1} \rightarrow X_{2} \\
& X_{1} \leftrightarrow X_{2}
\end{aligned} \Longleftrightarrow x_{1}-x_{2} \leq 0, x_{1}-x_{2}=0 ~ \$
$$

Examples

- $\left(X_{A} \vee X_{B}\right) \rightarrow\left(X_{C} \vee X_{D} \vee X_{E}\right)$

$$
\begin{aligned}
& x_{A}+x_{B} \geq 1 \\
& x_{A}+x_{B} \geq 1 \Longrightarrow x=1 \\
& x_{A}+x_{B}-2 x \leq 0
\end{aligned}
$$

$$
x_{C}+x_{D}+x_{E} \geq 1
$$

$$
x=1 \Longrightarrow x_{C}+x_{D}+x_{E} \geq 1
$$

$$
x_{C}+x_{D}+x_{E} \geq x
$$

- Disjunctive constraints (encountered earlier)
- Constraint: $x_{1} x_{2}=0$

1) replace $x_{1} x_{2}$ by x_{3}
2) $x_{3}=1 \Longleftrightarrow x_{1}=1, x_{2}=1$

$$
\begin{aligned}
-x_{1}+x_{3} & \leq 0 \\
-x_{2}+x_{3} & \leq 0 \\
x_{1}+x_{2}-x_{3} & \leq 1
\end{aligned}
$$

- z.x, $z \in \mathbb{R}, x \in \mathbb{B}$

1) replace $z x$ by z_{1}
2) impose:

$$
\begin{aligned}
& x=0 \Longleftrightarrow z_{1}=0 \\
& x=1 \Longleftrightarrow z_{1}=z \\
& \\
& z_{1}-M x \quad \leq 0 \\
& -z+z_{1} \quad \leq 0 \\
& z-z_{1}+M x \leq M
\end{aligned}
$$

- Special ordered sets of type $1 / 2$ (for continuous or integer vars): SOS1: set of vars within which exactly one must be non-zero SOS2: set of vars within which at most two can be non-zero. The two variables must be adjacent in the ordering
- separable programming and piecewise linear functions (next 5 slides)

Separable Programming

- Separable functions: sum of functions of single variables:

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}+e^{x^{3}} \quad \text { YES } \\
& x_{1} x_{2}+\frac{x_{2}}{x_{1}+1}+x_{3} \quad \mathrm{NO}
\end{aligned}
$$

(actually, some non-separable can also be made separable:

1. $x_{1} x_{2}$ by y
2. relate y to x_{1} and x_{2} by:

$$
\log y=\log x_{1}+\log x_{2}
$$

needs care if x_{1} and x_{2} close to zero.)

- non-linear separable functions can be approximated by piecewise linear functions
(valid for both constraints and objective functions)

Convex Non-linear Functions

- We can model convex non-linear functions by piece-wise linear functions and LP

$$
\begin{aligned}
\min & x_{1}^{2}-4 x_{1}
\end{aligned}-2 x_{2}, ~ \begin{aligned}
x_{1}+x_{2} & \leq 4 \\
2 x_{1}+x_{2} & \leq 5 \\
-x_{1}+4 x_{2} & \geq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- LP Formulation

$$
\begin{aligned}
& x=\lambda_{0} a_{0}+\lambda_{1} a_{1}+\lambda_{2} a_{2}+\lambda_{3} a_{3} \\
& y=\lambda_{0} f\left(a_{0}\right)+\lambda_{1} f\left(a_{1}\right)+\lambda_{2} f\left(a_{2}\right)+\lambda_{3} f\left(a_{3}\right) \\
& \sum_{i=0}^{3} \lambda_{i}=1 \\
& \lambda_{i} \geq 0 \quad i=0, \ldots, 3 \\
& \text { at most two adjacent } \lambda_{i} \text { can be non zero }
\end{aligned}
$$

- To model (*) which are SOS2 we would need binary indicator variables and hence BIP as in next slide.
- However since the problem is convex, an optimal solution lies on the borders of the functions and hence we can skip introducing the binary variables and relax (*)

Non-convex Functions

- non-convex functions require indicator variables and IP formulation

$$
g(x)=\sum_{j} g_{j}(x) \quad g_{j} \text { non linear }
$$

- approximated by $f(x)$ piecewise linear in the disjoint intervals $\left[a_{i}, b_{i}\right]$
- convex hull formulation (convex combination of points)

$$
\bigcup_{i \in I}\left(\begin{array}{l}
x=\quad \lambda a_{i}+\mu b_{i} \\
y=\lambda f\left(a_{i}\right)+\mu f\left(b_{i}\right) \\
\lambda+\mu=1 \quad \lambda, \mu \geq 0
\end{array}\right)
$$

Remember how we modeled disjunctive polyhedra...

- using indicator variables δ s we obtain the BIP formulation:

$$
\begin{aligned}
& x=\sum_{i \in I}\left(\lambda_{i} a_{i}+\mu_{i} b_{i}\right) \\
& y=\sum_{i \in I}\left(\lambda_{i} f\left(a_{i}\right)+\mu_{i} f\left(b_{i}\right)\right) \\
& \lambda_{i}+\mu_{i}=\delta_{i} \quad \forall i \in I \\
& \sum_{i \in I} \delta_{i}=1 \\
& \lambda_{i}, \mu_{i} \geq 0 \quad \forall i \in I \\
& \delta_{i} \in\{0,1\} \quad \forall i \in I
\end{aligned}
$$

the $\delta \mathbf{s}$ are SOS1.

Good/Bad Models

- Number of variables: sometimes it may be advantageous increasing if they are used in search tree.
$0-1$ var have specialized algorithms for preprocessing and for branch and bound. Hence a large number solved efficiently. Good using.
Binary expansion:

$$
\begin{array}{rr}
0 \leq y \leq u & \\
y=x_{0}+2 x_{1}+4 x_{2}+8 x_{3}+\ldots+2^{r} x_{r} & r=\log _{2} u
\end{array}
$$

- Making explicit good variables for branching:

$$
\begin{aligned}
\sum_{j} a_{j} y_{j} & \leq b \\
\sum_{j} a_{j} x_{j}+u & =b
\end{aligned}
$$

u may be a good variable to branch (u is relaxed in LP but must be integer as well)

- Symmetry breaking:

Eg machine maintenance (see task 4 , ex 3 , sheet 5) $y_{j} \in \mathbb{Z}$ vs $x_{j} \in \mathbb{B}$

- Difficulty of LP models depends on number of constraints:

$$
\begin{array}{rc}
\min \sum_{t}\left|a_{t} z_{t}-b_{t}\right| & \max \sum_{t} z_{t}^{\prime} \quad \max \sum_{t} z_{t}^{+}-z_{t}^{-} \\
z_{t}^{\prime} \geq a_{t} z_{t}-b_{1} & z_{t}^{+}-z_{t}^{-}=a_{t} z_{t}-b_{t} \\
z_{t}^{\prime} \geq b_{t}-a_{t} z_{t} & \text { more variables but less } \\
\text { constraints }
\end{array}
$$

- With IP it might be instead better increasing the number of constraints.
- Make M as small as possible in IP (reduces feasible region possibly fitting it to convex hull.

Practical Tips

- Units of measure: check them!
all data should be scaled to stay in $0.1-10$
some software do this automatically
- Write few line of text describing what the equations express and which are the variables, give examples on the problem modeled.
- Try the model on small simple example that can be checked by hand.
- Be diffident of infeasibility and unboundedness, double check.
- Estimate the potential size. If IP problem large and no structure then it might be hard. If TUM then solvable with very large size If other structure, eg, packing, covering also solvable with large size
- Check the output of the solver and understand what is happening
- If all fail resort to heuristics

