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Machines/Materials A and B
Products 1 and 2

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1 ≥ 0
x2 ≥ 0

Graphical Representation:

5x1 + 10x2 ≤ 60

4x1 + 4x2 ≤ 406x1 + 8x2 = 16

x1

x2
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Simplex MethodLinear Programming

Abstract mathematical model:

Decision Variables
Criterion

Constraints

objective func. max /min cT · x c ∈ Rn

constraints A · x R b A ∈ Rm×n, b ∈ Rm

x ≥ 0 x ∈ Rn, 0 ∈ Rn

I Any vector x ∈ Rn satisfying all constraints is a feasible solution.
I Each x∗ ∈ Rn that gives the best possible value for cT x among all

feasible x is an optimal solution or optimum
I The value cT x∗ is the optimum value
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max c1x1 + c2x2 + c3x3 + . . . + cnxn = z
s.t. a11x1 + a12x2 + a13x3 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + a23x3 + . . . + a2nxn ≤ b2
. . .

am1x1 + am2x2 + am3x3 + . . . + amnxn ≤ bm
x1, x2, . . . , xn ≥ 0

cT =
[
c1 c2 . . . cn

]

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

a31 a32 . . . amn

 , x =


x1
x2
...
xn

 , b =


b1
b2
...

bm



max z = cT x
Ax = b

x ≥ 0

6



Definitions and Basics
Fundamental Theorem of LP
Gaussian Elimination
Simplex MethodDefinitions

I N natural numbers, Z integer numbers, Q rational numbers,
R real numbers

I column vector and matrices
scalar product: yT x =

∑n
i=1 yixi

I linear combination

x ∈ Rk

x1, . . . , xk ∈ R x =
∑k

i=1 λixi
λ = (λ1, . . . , λk)T ∈ Rk

moreover:

λ ≥ 0 conic combination
λT1 = 1 (

∑k
i=1 λi = 1) affine combination

λ ≥ 0 and λT1 = 1 convex combination
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I set S is linear independent if no element of it can be expressed as
combination of the others
Eg: S ⊆ R =⇒ max n lin. indep.

I rank of a matrix for columns (= for rows)
if (m, n)-matrix has rank = min{m, n} then the matrix is full rank
if (n, n)-matrix is full rank then it is regular and admits an inverse

I G ⊆ Rn is an hyperplane if ∃a ∈ Rn \ {0} and α ∈ R:

G = {x ∈ Rn | aT x = α}

I H ⊆ Rn is an halfspace if ∃a ∈ Rn \ {0} and α ∈ R:

H = {x ∈ Rn | aT x ≤ α}

(aT x = α is a supporting hyperplane of H)
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I a set S ⊂ R is a polyhedron if ∃m ∈ Z+,A ∈ Rm×n, b ∈ Rm:

P = {x ∈ R | Ax ≤ b} = ∩m
i=1{x ∈ Rn | Ai·x ≤ bi}

I a polyhedron P is a polytope if it is bounded: ∃B ∈ R,B > 0:

p ⊆ {x ∈ Rn |‖ x ‖≤ B}

I Theorem: every polyhedron P 6= Rn is determined by finitely many
halfspaces
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I General optimization problem:
max{ϕ(x) | x ∈ F}, F is feasible region for x

I If A and b are rational numbers, P = {x ∈ Rn | Ax ≤ b} is a rational
polyhedron

I convex set: if x , y ∈ P and 0 ≤ λ ≤ 1 then λx + (1− λ)y ∈ P

I convex function if its epigraph {(x , y) ∈ R2 : y ≥ f (x)} is a convex set
or f : X → R, if ∀x , y ∈ X , λ ∈ [0, 1] it holds that
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
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I Given a set of points X ⊆ Rn the convex hull conv(X ) is the convex
linear combination of the points

conv(X ) = {λ1~x1+λ2x2+. . .+λnxn|~xi ∈ X ;λ1, λ2, . . . , λn ≥ 0 and
∑

i λi = 1}
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I A face of P is F = {x ∈ P|ax = α}. Hence F is either P itself or the
intersection of P with a supporting hyperplane. It is said to be proper if
F 6= ∅ and F 6= P.

I A point x for which {x} is a face is called a vertex of P and also a basic
solution of Ax ≤ b

I A facet is a maximal face distinct from P
cx ≤ d is facet defining if cx = d is a supporting hyperplane of P
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Input: a matrix A ∈ Rm×n and column vectors b ∈ Rm, c ∈ Rn

Task:

1. decide that {x ∈ Rn; Ax ≤ b} is empty (prob. infeasible), or

2. find a column vector x ∈ Rn such that Ax ≤ b and cT x is max, or

3. decide that for all α ∈ R there is an x ∈ Rn with Ax ≤ b and cT x > α
(prob. unbounded)

1. F = ∅
2. F 6= ∅ and ∃ solution

1. one solution
2. infinite solution

3. F 6= ∅ and 6 ∃ solution
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I Linear algebra: linear equations (Gaussian elimination)

I Integer linear algebra: linear diophantine equations

I Linear programming: linear inequalities (simplex method)

I Integer linear programming: linear diophantine inequalities
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Theorem (Fundamental Theorem of Linear Programming)

Given:

min{cT x | x ∈ P} where P = {x ∈ Rn | Ax ≤ b}

If P is a bounded polyhedron and not empty and x∗ is an optimal solution to
the problem, then:

I x∗ is an extreme point (vertex) of P, or

I x∗ lies on a face F ⊂ P of optimal solution

Proof:

I assume x∗ not a vertex of P then ∃ a ball around it still in P. Show that
a point in the ball has better cost

I if x∗ is not a vertex then it is a convex combination of vertices. Show
that all points are also optimal.
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Implications:

I the optimal solution is at the intersection of hyperplanes supporting
halfspaces.

I hence finitely many possibilities

I Solution method: write all inequalities as equalities and solve all
(n
m

)
systems of linear equalities (n # variables, m # constraints)

I for each point we need then to check if feasible and if best in cost.

I each system is solved by Gaussian elimination
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1. find a solution that is at the intersection of some n hyperplanes

2. try systematically to produce the other points by exchanging one
hyperplane with another

3. check optimality, proof provided by duality theory
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1. Forward elimination
reduces the system to triangular (row echelon) form (or degenerate)
elementary row operations (or LU decomposition)

2. back substitution

Example:

2x + y − z = 8 (I )
−3x − y + 2z = −11 (II )
−2x + y + 2z = −3 (III )
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|-----------+---+-----+-----+---|
| | 2 | 1 | -1 | 8 |
| 3/2 I+II | 0 | 1/2 | 1/2 | 1 |
| I+III | 0 | 2 | 1 | 5 |
|-----------+---+-----+-----+---|

|-----------+---+-----+-----+---|
| | 2 | 1 | -1 | 8 |
| | 0 | 1/2 | 1/2 | 1 |
| -4 II+III | 0 | 0 | -1 | 1 |
|-----------+---+-----+-----+---|

|---+-----+-----+---|
| 2 | 1 | -1 | 8 |
| 0 | 1/2 | 1/2 | 1 |
| 0 | 0 | -1 | 1 |
|---+-----+-----+---|

|---+---+---+----|
| 1 | 0 | 0 | 2 | => x=2
| 0 | 1 | 0 | 3 | => y=3
| 0 | 0 | 1 | -1 | => z=-1
|---+---+---+----|

2x + y − z = 8 (I )
+ 1

2y + 1
2z = 1 (II )

+ 2y + 1z = 5 (III )

2x + y − z = 8 (I )
+ 1

2y + 1
2z = 1 (II )

− z = 1 (III )

2x + y − z = 8 (I )
+ 1

2y + 1
2z = 1 (II )

− z = 1 (III )

x = 2 (I )
y = 3 (II )

z = −1 (III )

Polynomial time O(n2m) but needs to guarantee that all the numbers during
the run can be represented by polynomially bounded bits
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Definitions and Basics
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max
n∑

j=1
cjxj

n∑
j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0

max cT x
Ax ≤ b

x ≥ 0

x ∈ Rn, c ∈ Rn,A ∈ Rm×n, b ∈ Rm

max
[
6 8

] [x1
x2

]
[
5 10
4 4

] [
x1
x2

]
≤

[
60
40

]
x1, x2 ≥ 0
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Each linear program can be converted in the form:

max cT x
Ax ≤ b

x ∈ Rn

c ∈ Rn,A ∈ Rm×n, b ∈ Rm

I if equations, then put two
constraints, ax ≤ b and ax ≥ b

I if ax ≥ b then −ax ≤ −b
I if min cT x then max(−cT x)

and then be put in standard (or equational) form

max cT x
Ax = b

x ≥ 0

x ∈ Rn, c ∈ Rn,A ∈ Rm×n, b ∈ Rm

1. “=” constraints
2. x ≥ 0 nonnegativity constraints
3. (b ≥ 0)
4. max
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Every LP can be transformed in std. form

1. introduce slack variables (or surplus)

5x1 + 10x2 + x3 = 60
4x1 + 4x2 + x4 = 40

2. if x1 R 0 then
x1 = x ′1 − x ′′1
x ′1 ≥ 0
x ′′1 ≥ 0

3. (b ≥ 0)

4. min cT x ≡ max(−cT x)

LP in n ×m converted into LP with at most (m + 2n) variables and m
equations (n # original variables, m # constraints)
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I Ax = b is a system of equations that we can solve by Gaussian
elimination

I Elementary row operations of
[
A | b

]
do not affect set of feasible

solutions
I multiplying all entries in some row of

[
A | b

]
by a nonzero real

number λ
I replacing the ith row of

[
A | b

]
by the sum of the ith row and jth

row for some i 6= j

I We assume rank(
[
A | b

]
) = rank(A) = m, ie, rows of A are linearly

independent
otherwise, remove linear dependent rows
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Basic feasible solutions are the vertices of the feasible region:

More formally:
Let B = {1 . . .m}, N = {m + 1 . . . n + m} be subsets of columns
AB is made of columns of A indexed by B:

Definition
x ∈ Rn is a basic feasible solution of the linear program
max{cT x | Ax = b, x ≥ 0} for an index set B if:

I xj = 0 ∀j 6∈ B
I the square matrix AB is nonsingular, ie, all columns indexed by B are

lin. indep.
I xB = A−1

B b is nonnegative, ie, xB ≥ 0 (feasibility)
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We call xj , j ∈ B basic variables and remaining variables nonbasic variables.

Theorem
A basic feasible solution is uniquely determined by the set B.

Proof:

Ax =ABxB + ANxN = b

xB + A−1
B ANxN = A−1

B b

xB = A−1
B b AB is singular hence one solution

Note: we call B a (feasible) basis
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Extreme points and basic feasible solutions are geometric and algebraic
manifestations of the same concept:

Theorem

Let P be a (convex) polyhedron from LP in std. form. For a point v ∈ P the
following are equivalent:
(i) v is an extreme point (vertex) of P
(ii) v is a basic feasible solution of LP

Proof: by recognizing that vertices of P are linear independent and such are
the columns in AB

Theorem

Let LP = max{cT x | Ax = b, x ≥ 0} be feasible and bounded, then the
optimal solution is a basic feasible solution.

Proof. consequence of previous theorem and fundamental theorem of linear
programming
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Idea for solution method:
examine all basic solutions.
There are finitely many:

(m+n
m

)
.

However, if n = m then
(2m

m

)
≈ 4m.
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max z =
[
6 8

] [x1
x2

]

[
5 10 1 0
4 4 0 1

]
x1
x2
x3
x4

 =

[
60
40

]
x1, x2, x3, x4 ≥ 0

Canonical std. form: one
decision variable is isolated in
each constraint and does not
appear in the other constraints
or in the obj. func. and b
terms are positive

It gives immediately a feasible solution:

x1 = 0, x2 = 0, x3 = 60, x4 = 40

Is it optimal? Look at signs in z  if positive then an increase would improve.
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Let’s try to increase a promising variable, ie, x1, one with positive coefficient
in z (is the best choice?)

5x1 + x3 = 60
x1 = 60

5 −
x3
5

x3 = 60− 5x1 ≥ 0

If x1 > 12 then x3 < 0

5x1 + x3 = 60
x1

x3

4x1 + x4 = 40
x1 = 40

4 −
x4
4

x4 = 40− 4x1 ≥ 0

If x1 > 10 then x4 < 0

4x1 + x4 = 40x1

x4

we can take the minimum of the two  x1 increased to 10
x4 exits the basis and x1 enters
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First simplex tableau:

x1 x2 x3 x4 −z b
x3 5 10 1 0 0 60
x4 4 4 0 1 0 40

6 8 0 0 1 0

we want to reach this new tableau

x1 x2 x3 x4 −z b
x3 0 ? 1 ? 0 ?
x1 1 ? 0 ? 0 ?

0 ? 0 ? 1 ?

Pivot operation:
1. Choose pivot:

column: one s with positive coefficient in obj. func. (to discuss
later)

row: ratio between coefficient b and pivot column: choose the
one with smallest ratio:

θ = min
i

{
bi

ais
: ais > 0

}
, θ increase value of entering var.

2. elementary row operations to update the tableau
38



I x4 leaves the basis, x1 enters the basis
I Divide row pivot by pivot
I Send to zero the coefficient in the pivot column of the first row
I Send to zero the coefficient of the pivot column in the third (cost) row

| | x1 | x2 | x3 | x4 | -z | b |
|---------------+----+----+----+------+----+-----|
| I’=I-5II’ | 0 | 5 | 1 | -5/4 | 0 | 10 |
| II’=II/4 | 1 | 1 | 0 | 1/4 | 0 | 10 |
|---------------+----+----+----+------+----+-----|
| III’=III-6II’ | 0 | 2 | 0 | -6/4 | 1 | -60 |

From the last row we read: 2x2 − 3/2x4 − z = −60, that is:
z = 60 + 2x2 − 3/2x4.
Since x2 and x4 are nonbasic we have z = 60 and
x1 = 10, x2 = 0, x3 = 10, x4 = 0.

I Done? No! Let x2 enter the basis

| | x1 | x2 | x3 | x4 | -z | b |
|--------------+----+----+------+------+----+-----|
| I’=I/5 | 0 | 1 | 1/5 | -1/4 | 0 | 2 |
| II’=II-I’ | 1 | 0 | -1/5 | 1/2 | 0 | 8 |
|--------------+----+----+------+------+----+-----|
| III’=III-2I’ | 0 | 0 | -2/5 | -1 | 1 | -64 |
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Reduced costs: the coefficients in the objective function of the nonbasic
variables, c̄N

Optimality:
The basic solution is optimal when the reduced costs in the corresponding
simplex tableau are nonpositive, ie, such that:

c̄N ≤ 0
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?
? x1

x2

?
? x1

x2
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