DM545 Linear and Integer Programming

Lecture 4 Initialization and Duality

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Initialization Duality

1. Initialization

2. Duality

Derivation and Motivation Theory

Simplex: Exception Handling, Overview

Handling exceptions in the Simplex Method

- 1. Unboundedness
- 2. More than one solution
- 3. Degeneracies
 - benign
 - cycling
- 4. Infeasible starting Phase I + Phase II

a. $F = \emptyset$

- b. $F \neq \emptyset$ and \exists solution
 - i) one solution
 - ii) infinite solution

c.
$$F \neq \emptyset$$
 and $\not\exists$ solution

Outline

Initialization Duality

1. Initialization

2. Duality

Derivation and Motivation Theory

Initial Infeasibility

 $\begin{array}{rll} \max & x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ \le \ 2 \\ 2x_1 \ + \ 2x_2 \ \ge \ 5 \\ x_1, x_2 \ \ge \ 0 \end{array} \qquad \begin{array}{rl} \max & x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ + \ x_3 \ = \ 2 \\ 2x_1 \ + \ 2x_2 \ - \ x_4 \ = \ 5 \\ x_1, x_2, x_3, x_4 \ \ge \ 0 \end{array}$

Initial tableau

 \rightsquigarrow we do not have an initial basic feasible solution!!

In general finding any feasible solution is difficult as finding an optimal solution, otherwise we could do binary search

Auxiliary Problem (I Phase of Simplex)

We introduce auxiliary variables:

 $w^* = \max -x_5 \equiv \min x_5$ $x_1 + x_2 + x_3 = 2$ $2x_1 + 2x_2 - x_4 + x_5 = 5$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

if $w^* = 0$ then $x_5 = 0$ and the two problems are equivalent if $w^* > 0$ then not possible to set x_5 to zero.

Initial tableau

Keep z always in basis

• we reach a canonical form simply by letting x_5 enter the basis:

| x1 | x2 | x3 | x4 | x5 | -z | -w | b | 2 | 0 | -1 | 2 | 1 1 0 1 1 | -1 | 0 1 1 1 Z 0 0 I TV+TT I 21 2 | 0 | -1 | 0 | 0 | 1 | 5 |

now we have a basic feasible solution!

\blacktriangleright x₁ enters, x₃ leaves

| x1 | x2 | x3 | x4 | x5 | -z | -w | ___+ 0 | -2 | 0 1 -1 I 1 1 0 1 0 1 | TT-2T' 1 | 0 1 0 | -2 | -1 | III-I' 0 0 | IV-2I' | 0 | 0 | -2 | -1 | 0 0 1 1 1

 $w^* = -1$ then no solution with $X_5 = 0$ exists then no feasible solution to initial problem

Initialization Duality

8

Initial Infeasibility - Another Example

$$\begin{array}{rll} \max & x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ \le 2 \\ 2x_1 \ + \ 2x_2 \ \ge 2 \\ x_1, x_2 \ \ge 0 \end{array} \qquad \begin{array}{rll} \max & x_1 \ - \ x_2 \\ x_1 \ - \ x_2 \\ x_1 \ + \ x_2 \ + \ x_3 \ = 2 \\ 2x_1 \ + \ 2x_2 \ - \ x_4 \ = 2 \\ x_1, x_2, x_3, x_4 \ \ge 0 \end{array}$$

Auxiliary problem (I phase):

 $w = \max -x_5 \equiv \min x_5$ $x_1 + x_2 + x_3 = 2$ $2x_1 + 2x_2 - x_4 + x_5 = 2$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

→ we do not have an initial basic feasible solution.

set in canonical form: | x1 | x2 | x3 | x4 | x5 | -z | -w | b | 21 2 1 0 | -1 | 1 1 0 | l z 1 | -1 | 0 0 0 1 0 1 1 | 0 | | IV+II | 2 | 2 | 0 | -1 | 0 | 0 | 1 | 2 | \blacktriangleright x₁ enters, x₅ leaves | x1 | x2 | x3 | x4 | x5 | -z | -w | b | 0 | 1 | 1/2 | -1/2 | 0 |0 1 $1 \mid 0 \mid -1/2 \mid 1/2 \mid$ 0 | | z | 0 | -2 | 0 | 1/2 | -1/2 | 1 | 0 | -1 0 1 0 0 0 0 -1 0

 $w^* = 0$ hence $x_5 = 0$ we have a starting feasible solution for the initial problem.

Initialization Duality

Optimal solution: $x_1 = 2, x_2 = 0, x_3 = 0, x_4 = 2, z = 2$.

In Dictionary Form

Initialization Duality

$$x_{3} = 2 - x_{1} - x_{2}$$

$$x_{4} = -5 + 2x_{1} + 2x_{2}$$

$$z = x_{1} + x_{2}$$

sol. infeasible

We introduce corrections of infeasibility

$$\begin{array}{rl} \max \ -x_0 \equiv \min \ x_0 \\ x_1 \ + \ x_2 \ - \ x_0 \leq 2 \\ 2x_1 \ + \ 2x_2 \ - \ x_0 \geq 5 \\ x_1, x_2, x_0 \geq 0 \end{array} \qquad \begin{array}{rl} x_3 = \ 2 \ - \ x_1 \ - \ x_2 \ + \ x_0 \\ x_4 = \ -5 \ + \ 2x_1 \ + \ 2x_2 \ + \ x_0 \\ z = \ - \ x_0 \end{array}$$

It is still infeasible but it can be made feasible by letting x_0 enter the basis which variable should leave? the most infeasible: the var with the *b* term whose negative value has the largest magnitude

Simplex: Exception Handling, Summary

Initialization Duality

Handling exceptions in the Simplex Method

- 1. Unboundedness
- 2. More than one solution
- 3. Degeneracies
 - benign
 - cycling
- 4. Infeasible starting Phase I + Phase II

a. $F = \emptyset$

- b. $F \neq \emptyset$ and \exists solution
 - i) one solution
 - ii) infinite solution
- c. $F \neq \emptyset$ and $\not\exists$ solution

Outline

Initialization Duality

1. Initialization

2. Duality

Derivation and Motivation Theory

Outline

Initialization Duality

1. Initialization

2. Duality Derivation and Motivation Theory

A dual variable y_i associated to each constraint:

Primal problem:

$$\begin{array}{ll} \max & z = c^T x \\ Ax \leq b \\ x > 0 \end{array}$$

Dual Problem:

$$\begin{array}{ll} \min & w \ = \ b^{\mathsf{T}} y \\ Ay \ \ge \ c \\ y \ \ge \ 0 \end{array}$$

Bounding approach

a feasible solution is a lower bound but how good? By tentatives:

$$(x_1, x_2, x_3) = (1, 0, 0) \rightsquigarrow z^* \ge 4$$

 $(x_1, x_2, x_3) = (0, 0, 3) \rightsquigarrow z^* \ge 9$

What about upper bounds?

find?

multipliers $y_1, y_2 \ge 0$ that preserve sign of inequality

Coefficients

 $z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 + y_2)x_2 + y_2x_3 \le y_1 + 3y_2$ then to attain the best upper bound:

$$\begin{array}{rll} \min & y_1 & + & 3y_2 \\ & y_1 & + & 3y_2 \geq 4 \\ & 4y_1 & + & y_2 \geq 1 \\ & & y_2 \geq 3 \\ & & y_1, y_2 \geq 0 \end{array}$$

Multipliers Approach

Working columnwise, since at optimum $\bar{c}_k \leq 0$ for all k = 1, ..., n + m:

$$\begin{cases} \pi_{1}a_{11} + \pi_{2}a_{21} \dots + \pi_{m}a_{m1} + \pi_{m+1}c_{1} \leq 0\\ \vdots & \ddots \\ \frac{\pi_{1}a_{1n} + \pi_{2}a_{2n} \dots + \pi_{m}a_{mn} + \pi_{m+1}c_{n} \leq 0}{\frac{\pi_{1}a_{1,n+1}}{\pi_{1}a_{1,n+1}} - \frac{\pi_{2}a_{2,n+2}}{\pi_{2}a_{2,n+2}} \dots - \frac{\pi_{m}a_{m,n+1}}{\pi_{m}a_{m,n+1}} - \frac{\leq 0}{\pi_{m+1}} - \frac{1}{\pi_{m+1}} \end{cases}$$

(since from the last row $z = -\pi b$ and we want to maximize z then we would $\min(-\pi b)$ or equivalently $\max \pi b$)

$$\max \begin{array}{l} \max \ \pi_{1}b_{1} \ + \ \pi_{2}b_{2} \ \dots \ + \ \pi_{m}b_{m} \\ \pi_{1}a_{11} \ + \ \pi_{2}a_{21} \ \dots \ + \ \pi_{m}a_{m1} \ \leq \ -c_{1} \\ \vdots \ \ddots \\ \pi_{1}a_{1n} \ + \ \pi_{2}a_{2n} \ \dots \ + \ \pi_{m}a_{mn} \ \leq \ -c_{n} \\ \pi_{1}, \pi_{2}, \dots \ \pi_{m} \ \leq \ 0 \end{array}$$

 $y = -\pi$

$$\max \begin{array}{rcl} -y_{1}b_{1} & + & -y_{2}b_{2} & \dots & + & -y_{m}b_{m} \\ & -y_{1}a_{11} & + & -y_{2}a_{21} & \dots & + & -y_{m}a_{m1} \leq -c_{1} \\ & \vdots & \ddots & \\ & & -y_{1}a_{1n} & + & -y_{2}a_{2n} & \dots & + & -y_{m}a_{mn} \leq -c_{n} \\ & & & -y_{1}, -y_{2}, \dots & -y_{m} \leq 0 \end{array}$$

$$\min \begin{array}{l} w = b^{T}y \\ A^{T}y \ge c \\ y \ge 0 \end{array}$$

Example

Initialization Duality

$$\left\{ \begin{array}{rrrr} 5\pi_1 \ + \ 4\pi_2 \ + \ 6\pi_3 \leq 0 \\ 10\pi_1 \ + \ 4\pi_2 \ + \ 8\pi_3 \leq 0 \\ 1\pi_1 \ + \ 0\pi_2 \ + \ 0\pi_3 \leq 0 \\ 0\pi_1 \ + \ 1\pi_2 \ + \ 0\pi_3 \leq 0 \\ 0\pi_1 \ + \ 0\pi_2 \ + \ 1\pi_3 = 1 \\ 60\pi_1 \ + \ 40\pi_2 \end{array} \right.$$

$$y_1 = -\pi_1 \ge 0$$

 $y_2 = -\pi_2 \ge 0$

Duality Recipe

	Primal linear program	Dual linear program
Variables	x_1, x_2, \ldots, x_n	y_1, y_2, \dots, y_m
Matrix	A	A^T
Right-hand side	b	с
Objective function	$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$
Constraints	i th constraint has $\leq \geq =$	$egin{array}{l} y_i \geq 0 \ y_i \leq 0 \ y_i \in \mathbb{R} \end{array}$
	$x_j \ge 0 x_j \le 0 x_j \in \mathbb{R}$	j th constraint has $\geq \leq =$

Outline

Initialization Duality

1. Initialization

2. Duality Derivation and Motivation Theory

Symmetry

The dual of the dual is the primal: Primal problem:

$$\begin{array}{ll} \max & z \ = \ c^{\mathsf{T}} x \\ Ax \ \le \ b \\ x \ \ge \ 0 \end{array}$$

$$\begin{array}{ll} \min & w \ = \ b^T y \\ Ay \ \ge \ c \\ y \ \ge \ 0 \end{array}$$

Let's put the dual in the usual form Dual problem:

Dual of Dual:

$$\begin{array}{ll} \min \ b^T y \ \equiv \ -\max - b^T y \\ -Ay \ \leq \ -c \\ y \ \geq \ 0 \end{array}$$

$$-\min c^{\mathsf{T}} x -Ax \ge -b x \ge 0$$

Weak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P) max{ $c^T x \mid Ax \le b, x \ge 0$ } (D) min{ $b^T y \mid A^T y \ge c, y \ge 0$ }

for any feasible solution x of (P) and any feasible solution y of (D):

 $c^T x \leq b^T y$

Proof: From (D) $c_j \leq \sum_{i=1}^{m} y_i a_{ij} \forall j \text{ and } x_j \geq 0.$ From (P) $b_i \geq \sum_{j=1}^{n} a_{ij} x_i \forall j \text{ and } y_i \geq 0$

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} y_{i} a_{ij} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{i} \right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}$$

Strong Duality Theorem

Theorem (Strong Duality Theorem) (Gale, Kuhn, Tucker, 1951; Dantzig, Von Neumann, 1947))

Given:

(P) max{
$$c^T x \mid Ax \leq b, x \geq 0$$
}
(D) min{ $b^T y \mid A^T y \geq c, y \geq 0$ }

exactly one of the following occurs:

- 1. (P) and (D) are both infeasible
- 2. (P) is unbounded and (D) is infeasible
- 3. (P) is infeasible and (D) is unbounded
- 4. (P) has feasible solution x* = [x₁*,...,x_n*]
 (D) has feasible solution y* = [y₁*,...,y_m*]

$$c^{\mathsf{T}}x^* = b^{\mathsf{T}}y^*$$

Proof:

- all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D) are ruled out by weak duality theorem.
- ▶ we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas Lemma and convex polyhedral analysis)
- The last row of the final tableau will give us

$$z = z^{*} + \sum_{k=1}^{n+m} \bar{c}_{k} x_{k} = z^{*} + \sum_{j=1}^{n} \bar{c}_{j} x_{j} + \sum_{i=1}^{m} \bar{c}_{n+i} x_{n+i}$$
(*)
= $z^{*} + \bar{c}_{B} x_{B} + \bar{c}_{N} x_{N}$

In addition, $z^* = \sum_{j=1}^{n} c_j x_j^*$ because optimal value

• We define $y_i^* = -\overline{c}_{n+i}$, i = 1, 2, ..., m

▶ We claim that $(y_1^*, y_2^*, \dots, y_m^*)$ is a dual feasible solution satisfying $c^T x^* = b^T y^*$.

Let's verify the claim: We substitute in (*) $\sum c_j x_j$ for z and $x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j$ for $i = 1, 2, \ldots, m$ for slack variables

$$\sum c_j x_j = z^* + \sum_{j=1}^n \bar{c}_j x_j - \sum_{i=1}^m y_i^* \left(b_i - \sum_{j=1}^n a_{ij} x_j \right)$$
$$= \left(z^* - \sum_{i=1}^m y_i^* b_i \right) + \sum_{j=1}^n \left(\bar{c}_j + \sum_{i=1}^m a_{ij} y_i^* \right) x_j$$

This must hold for every (x_1, x_2, \ldots, x_n) hence:

$$z^* = \sum_{i=1}^m b_i y_i^* \implies y^* \text{ satisfies } c^T x^* = b^T y^*$$
$$c_j = \bar{c}_j + \sum_{i=1}^m a_{ij} y_i^*, j = 1, 2, \dots, n$$

/

Initialization Duality

Since $\bar{c}_k \leq 0$ for every $k = 1, 2, \ldots, n + m$:

$$\bar{c}_j \leq 0 \rightsquigarrow \quad c_j - \sum_{i=1}^m y_i^* a_{ij} \leq 0 \rightsquigarrow \quad \sum_{i=1}^m y_i^* a_{ij} \geq c_j \quad j = 1, 2, \dots, n$$
$$\bar{c}_{n+i} \leq 0 \rightsquigarrow \quad y_i^* = -\hat{c}_{n+i} \geq 0, \qquad \qquad i = 1, 2, \dots, m$$

 $\implies y^*$ is also dual feasible solution

Complementary Slackness Theorem

Theorem (Complementary Slackness)

A feasible solution x^* for (P) A feasible solution y^* for (D) Necessary and sufficient conditions for optimality of both:

$$\left(c_j-\sum_{i=1}^m y_i^*a_{ij}\right)x_j^*=0, \quad j=1,\ldots,n$$

If
$$x_j^* \neq 0$$
 then $\sum y_i^* a_{ij} = c_j$ (no surplus)
If $\sum y_i^* a_{ij} > c_j$ then $x_j^* = 0$

Proof:

In scalars

$$z^* = cx^* \le y^* Ax^* \le by^* = w^*$$

Hence from strong duality theorem:

 $cx^* - yAx^* = 0$

 $\sum_{j=1}^{n} (c_{j} - \sum_{i=1}^{m} y_{i}^{*} a_{ij}) \underbrace{x_{j}^{*}}_{\geq 0} = 0$

Hence each term must be = 0

Duality - Summary

Derivation:

- Bounding Approach
- Multiplers Approach
- Recipe
- Lagrangian Multipliers Approach (next time)
- ► Theory:
 - Symmetry
 - Weak Duality Theorem
 - Strong Duality Theorem
 - Complementary Slackness Theorem