
DM545

Linear and Integer Programming

Lecture 4
Initialization and Duality

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Initialization
DualityOutline

1. Initialization

2. Duality
Derivation and Motivation
Theory

2



Initialization
DualitySimplex: Exception Handling, Overview

Handling exceptions in the Simplex Method

1. Unboundedness

2. More than one solution

3. Degeneracies
I benign
I cycling

4. Infeasible starting
Phase I + Phase II

a. F = ∅
b. F 6= ∅ and ∃ solution

i) one solution
ii) infinite solution

c. F 6= ∅ and 6 ∃ solution
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Initialization
DualityInitial Infeasibility

max x1 − x2
x1 + x2 ≤ 2
2x1 + 2x2 ≥ 5

x1, x2 ≥ 0

max x1 − x2
x1 + x2 + x3 = 2
2x1 + 2x2 − x4 = 5

x1, x2, x3, x4 ≥ 0

I Initial tableau
| | x1 | x2 | x3 | x4 | -z | b |
|----+----+----+----+----+----+---|
| x3 | 1 | 1 | 1 | 0 | 0 | 2 |
| x4 | 2 | 2 | 0 | -1 | 0 | 5 |
|----+----+----+----+----+----+---|
| | 1 | -1 | 0 | 0 | 1 | 0 |

 we do not have an initial basic feasible solution!!
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In general finding any feasible solution is difficult as finding an optimal
solution, otherwise we could do binary search

Auxiliary Problem (I Phase of Simplex)
We introduce auxiliary variables:

w∗ = max −x5 ≡ min x5
x1 + x2 + x3 = 2
2x1 + 2x2 − x4 + x5 = 5

x1, x2, x3, x4, x5 ≥ 0

if w∗ = 0 then x5 = 0 and the two problems are equivalent
if w∗ > 0 then not possible to set x5 to zero.

I Initial tableau
| | x1 | x2 | x3 | x4 | x5 | -z | -w | b |
|----+----+----+----+----+----+----+----+---|
| | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
| | 2 | 2 | 0 | -1 | 1 | 0 | 0 | 5 |
| z | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |
|----+----+----+----+----+----+----+----+---|
| w | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

Keep z always in basis
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I we reach a canonical form simply by letting x5 enter the basis:
| | x1 | x2 | x3 | x4 | x5 | -z | -w | b |
|-------+----+----+----+----+----+----+----+---|
| | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
| | 2 | 2 | 0 | -1 | 1 | 0 | 0 | 5 |
| z | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |
|-------+----+----+----+----+----+----+----+---|
| IV+II | 2 | 2 | 0 | -1 | 0 | 0 | 1 | 5 |

now we have a basic feasible solution!

I x1 enters, x3 leaves
| | x1 | x2 | x3 | x4 | x5 | -z | -w | b |
|--------+----+----+----+----+----+----+----+----|
| | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
| II-2I’ | 0 | 0 | -2 | -1 | 1 | 0 | 0 | 1 |
| III-I’ | 0 | -2 | -1 | 0 | 0 | 1 | 0 | -2 |
|--------+----+----+----+----+----+----+----+----|
| IV-2I’ | 0 | 0 | -2 | -1 | 0 | 0 | 1 | 1 |

w∗ = −1 then no solution with X5 = 0 exists then no feasible solution
to initial problem
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max x1 − x2
x1 + x2 ≤ 2
2x1 + 2x2 ≥ 5

x1, x2 ≥ 0

x1

x2
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Initialization
DualityInitial Infeasibility - Another Example

max x1 − x2
x1 + x2 ≤ 2
2x1 + 2x2 ≥ 2

x1, x2 ≥ 0

max x1 − x2
x1 + x2 + x3 = 2
2x1 + 2x2 − x4 = 2

x1, x2, x3, x4 ≥ 0

Auxiliary problem (I phase):

w = max −x5 ≡ min x5
x1 + x2 + x3 = 2
2x1 + 2x2 − x4 + x5 = 2

x1, x2, x3, x4, x5 ≥ 0
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I Initial tableau
| | x1 | x2 | x3 | x4 | x5 | -z | -w | b |
|----+----+----+----+----+----+----+----+---|
| | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
| | 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |
| z | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |
|----+----+----+----+----+----+----+----+---|
| w | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

 we do not have an initial basic feasible solution.

I set in canonical form:
| | x1 | x2 | x3 | x4 | x5 | -z | -w | b |
|-------+----+----+----+----+----+----+----+---|
| | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 2 |
| | 2 | 2 | 0 | -1 | 1 | 0 | 0 | 2 |
| z | 1 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |
|-------+----+----+----+----+----+----+----+---|
| IV+II | 2 | 2 | 0 | -1 | 0 | 0 | 1 | 2 |

I x1 enters, x5 leaves
| | x1 | x2 | x3 | x4 | x5 | -z | -w | b |
|----+----+----+----+------+------+----+----+----|
| | 0 | 0 | 1 | 1/2 | -1/2 | 0 | 0 | 1 |
| | 1 | 1 | 0 | -1/2 | 1/2 | 0 | 0 | 1 |
| z | 0 | -2 | 0 | 1/2 | -1/2 | 1 | 0 | -1 |
|----+----+----+----+------+------+----+----+----|
| w | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |

w∗ = 0 hence x5 = 0 we have a starting feasible solution for the initial
problem.
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I (II phase) We keep only what we need:
| | x1 | x2 | x3 | x4 | -z | b |
|----+----+----+----+------+----+----|
| | 0 | 0 | 1 | 1/2 | 0 | 1 |
| | 1 | 1 | 0 | -1/2 | 0 | 1 |
|----+----+----+----+------+----+----|
| z | 0 | -2 | 0 | 1/2 | 1 | -1 |

I | | x1 | x2 | x3 | x4 | -z | b |
|----+----+----+----+----+----+----|
| | 0 | 0 | 2 | 1 | 0 | 2 |
| | 1 | 1 | 1 | 0 | 0 | 2 |
|----+----+----+----+----+----+----|
| z | 0 | -2 | -1 | 0 | 1 | -2 |

Optimal solution: x1 = 2, x2 = 0, x3 = 0, x4 = 2, z = 2.
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max x1 − x2
x1 + x2 ≤ 2
2x1 + 2x2 ≥ 2

x1, x2 ≥ 0

x1

x2
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Initialization
DualityIn Dictionary Form

max x1 − x2
x1 + x2 ≤ 2
2x1 + 2x2 ≥ 5

x1, x2 ≥ 0

x3 = 2 − x1 − x2
x4 = −5 + 2x1 + 2x2

z = x1 + x2

sol. infeasible

We introduce corrections of infeasibility

max −x0 ≡ min x0
x1 + x2 − x0 ≤ 2
2x1 + 2x2 − x0 ≥ 5

x1, x2, x0 ≥ 0

x3 = 2 − x1 − x2 + x0
x4 = −5 + 2x1 + 2x2 + x0

z = − x0

It is still infeasible but it can be made feasible by letting x0 enter the basis
which variable should leave?
the most infeasible: the var with the b term whose negative value has the
largest magnitude
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Initialization
DualitySimplex: Exception Handling, Summary

Handling exceptions in the Simplex Method

1. Unboundedness

2. More than one solution

3. Degeneracies
I benign
I cycling

4. Infeasible starting
Phase I + Phase II

a. F = ∅
b. F 6= ∅ and ∃ solution

i) one solution
ii) infinite solution

c. F 6= ∅ and 6 ∃ solution
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Initialization
DualityDual Problem

A dual variable yi associated to each constraint:

Primal problem:

max z = cT x
Ax ≤ b
x ≥ 0

Dual Problem:

min w = bT y
Ay ≥ c
y ≥ 0
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Initialization
DualityBounding approach

max 4x1 + x2 + 3x3
x1 + 4x2 ≤ 1
3x1 + x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

a feasible solution is a lower bound but how good?
By tentatives:

(x1, x2, x3) = (1, 0, 0) z∗ ≥ 4
(x1, x2, x3) = (0, 0, 3) z∗ ≥ 9

What about upper bounds?

2 · ( x1 + 4x2 ) ≤ 2 · 1
+ 3 · ( 3x1 + x2 + x3) ≤ 3 · 3

11x1 + 11x2 + 3x3 ≤ 11

4x1 + x2 + 3x3 ≤ 11x1 + 11x2 + 3x3 ≤ 11
cT x ≤ yTAx ≤ yTb

Hence z∗ ≤ 11. Is this the best upper bound we can find?
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multipliers y1, y2 ≥ 0 that preserve sign of inequality

y1 · ( x1 + 4x2 ) ≤ y1(1)
+y2 · ( 3x1 + x2 + x3) ≤ y2(3)
(y1 + 3y2)x1 + (4y1 + y2)x2 + y2x3 ≤ y1 + 3y2

Coefficients

y1 + 3y2 ≥ 4
4y1 + y2 ≥ 1

y2 ≥ 3

z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 + y2)x2 + y2x3 ≤ y1 + 3y2 then to
attain the best upper bound:

min y1 + 3y2
y1 + 3y2 ≥ 4
4y1 + y2 ≥ 1

y2 ≥ 3
y1, y2 ≥ 0
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Initialization
DualityMultipliers Approach

π1
...
πm
πm+1


a11 a12 . . . a1n a1,n+1 a1,n+2 . . . a1,m+n 0 b1
...

. . .
am1 am2 . . . amn am,n+1 am,n+2 . . . am,m+n 0 bm

c1 c2 . . . cn 0 0 . . . 0 1 0


Working columnwise, since at optimum c̄k ≤ 0 for all k = 1, . . . , n + m:

π1a11 + π2a21 . . . + πmam1 + πm+1c1 ≤ 0
...

. . .
π1a1n + π2a2n . . . + πmamn + πm+1cn ≤ 0

π1a1,n+1, π2a2,n+2, . . . πmam,n+1 ≤ 0
πm+1 = 1

π1b1 + π2b2 . . . + πmbm (≤ 0)

(since from the last row z = −πb and we want to maximize z then we would
min(−πb) or equivalently maxπb)
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max π1b1 + π2b2 . . . + πmbm

π1a11 + π2a21 . . . + πmam1 ≤ −c1
...

. . .
π1a1n + π2a2n . . . + πmamn ≤ −cn

π1, π2, . . . πm ≤ 0

y = −π

max −y1b1 + −y2b2 . . . + −ymbm

−y1a11 + −y2a21 . . . + −ymam1 ≤ −c1
...

. . .
−y1a1n + −y2a2n . . . + −ymamn ≤ −cn

−y1,−y2, . . .− ym ≤ 0

min w = bT y
AT y ≥ c

y ≥ 0
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DualityExample

max 6x1 + 8x2
5x1 + 10x2 ≤ 60
4x1 + 4x2 ≤ 40

x1, x2 ≥ 0



5π1 + 4π2 + 6π3 ≤ 0
10π1 + 4π2 + 8π3 ≤ 0
1π1 + 0π2 + 0π3 ≤ 0
0π1 + 1π2 + 0π3 ≤ 0
0π1 + 0π2 + 1π3 = 1
60π1 + 40π2

y1 = −π1 ≥ 0
y2 = −π2 ≥ 0

...
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Initialization
DualitySymmetry

The dual of the dual is the primal:
Primal problem:

max z = cT x
Ax ≤ b
x ≥ 0

Dual Problem:

min w = bT y
Ay ≥ c
y ≥ 0

Let’s put the dual in the usual form
Dual problem:

min bT y ≡ −max−bT y
−Ay ≤ −c
y ≥ 0

Dual of Dual:

−min cT x
−Ax ≥ −b

x ≥ 0
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DualityWeak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:

Theorem (Weak Duality Theorem)

Given:

(P) max{cT x | Ax ≤ b, x ≥ 0}
(D) min{bT y | AT y ≥ c , y ≥ 0}

for any feasible solution x of (P) and any feasible solution y of (D):

cT x ≤ bT y

Proof:
From (D) cj ≤

∑m
i=1 yiaij∀j and xj ≥ 0.

From (P) bi ≥
∑n

j=1 aijxi∀j and yi ≥ 0

n∑
j=1

cjxj ≤
n∑

j=1

(
m∑

i=1

yiaij

)
xj =

m∑
i=1

 n∑
j=1

aijxi

 yi ≤
m∑

i=1

biyi
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DualityStrong Duality Theorem

Theorem (Strong Duality Theorem) (Gale, Kuhn, Tucker, 1951; Dantzig, Von
Neumann, 1947))

Given:

(P) max{cT x | Ax ≤ b, x ≥ 0}
(D) min{bT y | AT y ≥ c , y ≥ 0}

exactly one of the following occurs:
1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution x∗ = [x∗1 , . . . , x

∗
n ]

(D) has feasible solution y∗ = [y∗
1 , . . . , y

∗
m]

cT x∗ = bT y∗

27



Initialization
Duality

Proof:

I all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded)
for (P) and 3 for (D) are ruled out by weak duality theorem.

I we use the simplex method. (Other proofs independent of the simplex
method exist, eg, Farkas Lemma and convex polyhedral analysis)

I The last row of the final tableau will give us

z = z∗ +
n+m∑
k=1

c̄kxk = z∗ +
n∑

j=1

c̄jxj +
m∑

i=1

c̄n+ixn+i (*)

= z∗ + c̄BxB + c̄NxN

In addition, z∗ =
∑n

j=1 cjx
∗
j because optimal value

I We define y∗
i = −c̄n+i , i = 1, 2, . . . ,m

I We claim that (y∗
1 , y

∗
2 , . . . , y

∗
m) is a dual feasible solution satisfying

cT x∗ = bT y∗.
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I Let’s verify the claim:
We substitute in (*)

∑
cjxj for z and xn+i = bi −

∑n
j=1 aijxj for

i = 1, 2, . . . ,m for slack variables

∑
cjxj = z∗ +

n∑
j=1

c̄jxj −
m∑

i=1

y∗
i

bi −
n∑

j=1

aijxj


=

(
z∗ −

m∑
i=1

y∗
i bi

)
+

n∑
j=1

(
c̄j +

m∑
i=1

aijy∗
i

)
xj

This must hold for every (x1, x2, . . . , xn) hence:

z∗ =
m∑

i=1

biy∗
i =⇒ y∗ satisfies cT x∗ = bT y∗

cj = c̄j +
m∑

i=1

aijy∗
i , j = 1, 2, . . . , n
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Since c̄k ≤ 0 for every k = 1, 2, . . . , n + m:

c̄j ≤ 0 cj −
m∑

i=1

y∗
i aij ≤ 0 

m∑
i=1

y∗
i aij ≥ cj j = 1, 2, . . . , n

c̄n+i ≤ 0 y∗
i = −ĉn+i ≥ 0, i = 1, 2, . . . ,m

=⇒ y∗ is also dual feasible solution
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DualityComplementary Slackness Theorem

Theorem (Complementary Slackness)

A feasible solution x∗ for (P)
A feasible solution y∗ for (D)
Necessary and sufficient conditions for optimality of both:(

cj −
m∑

i=1

y∗
i aij

)
x∗j = 0, j = 1, . . . , n

If x∗j 6= 0 then
∑

y∗
i aij = cj (no surplus)

If
∑

y∗
i aij > cj then x∗j = 0

Proof:

z∗ = cx∗ ≤ y∗Ax∗ ≤ by∗ = w∗

Hence from strong duality theorem:

cx∗ − yAx∗ = 0

In scalars
n∑

j=1

(cj −
m∑

i=1

y∗
i aij︸ ︷︷ ︸

≤0

) x∗j︸︷︷︸
≥0

= 0

Hence each term must be = 0
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Initialization
DualityDuality - Summary

I Derivation:

I Bounding Approach
I Multiplers Approach
I Recipe
I Lagrangian Multipliers Approach (next time)

I Theory:

I Symmetry
I Weak Duality Theorem
I Strong Duality Theorem
I Complementary Slackness Theorem
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