DM545
 Linear and Integer Programming

Lecture 4 Initialization and Duality

Marco Chiarandini
Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Initialization
2. Duality

Derivation and Motivation
Theory

Simplex: Exception Handling, Overview

Handling exceptions in the Simplex Method

1. Unboundedness
2. More than one solution
3. Degeneracies

- benign
- cycling

4. Infeasible starting Phase I + Phase II
a. $F=\emptyset$
b. $F \neq \emptyset$ and \exists solution
i) one solution
ii) infinite solution
c. $F \neq \emptyset$ and \nexists solution

Outline

1. Initialization

2. Duality

Derivation and Motivation
Theory

Initial Infeasibility

$$
\begin{aligned}
\max & x_{1}-x_{2} \\
x_{1}+x_{2} & \leq 2 \\
2 x_{1}+2 x_{2} & \geq 5 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\max x_{1}-x_{2} & \\
x_{1}+x_{2}+x_{3} & =2 \\
2 x_{1}+2 x_{2}-x_{4} & =5 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

- Initial tableau

\rightsquigarrow we do not have an initial basic feasible solution!!

In general finding any feasible solution is difficult as finding an optimal solution, otherwise we could do binary search

Auxiliary Problem (I Phase of Simplex)
We introduce auxiliary variables:

$$
\begin{aligned}
w^{*}=\max -x_{5} & \equiv \min x_{5} \\
x_{1}+x_{2}+x_{3} & =2 \\
2 x_{1}+2 x_{2}-x_{4}+x_{5} & =5 \\
&
\end{aligned}
$$

if $w^{*}=0$ then $x_{5}=0$ and the two problems are equivalent if $w^{*}>0$ then not possible to set x_{5} to zero.

- Initial tableau

Keep z always in basis

- we reach a canonical form simply by letting x_{5} enter the basis:

now we have a basic feasible solution!
- x_{1} enters, x_{3} leaves

$w^{*}=-1$ then no solution with $X_{5}=0$ exists then no feasible solution to initial problem

$$
\begin{aligned}
\max & x_{1}-x_{2} \\
x_{1}+x_{2} & \leq 2 \\
2 x_{1}+2 x_{2} & \geq 5 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Initial Infeasibility - Another Example

$$
\begin{aligned}
& \begin{aligned}
& \max \begin{array}{l}
x_{1}-x_{2} \\
x_{1}+x_{2}
\end{array} \leq 2 \\
& 2 x_{1}+2 x_{2} \geq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned} \\
& \begin{aligned}
\max \begin{array}{rl}
x_{1}-x_{2} \\
x_{1}+x_{2} & +x_{3} \\
2 x_{1}+2 x_{2} & 2 \\
x_{1}, x_{2}, x_{3}, x_{4} & =2 \\
& \geq 0
\end{array} r l
\end{aligned}
\end{aligned}
$$

Auxiliary problem (I phase):

$$
\begin{aligned}
w=\max -x_{5} & \equiv \min x_{5} \\
x_{1}+x_{2}+x_{3} & =2 \\
2 x_{1}+2 x_{2} & -x_{4}+x_{5}
\end{aligned}=22 子 \begin{aligned}
& =2, x_{2}, x_{3}, x_{4}, x_{5}
\end{aligned}
$$

- Initial tableau

\rightsquigarrow we do not have an initial basic feasible solution.
- set in canonical form:

- x_{1} enters, x_{5} leaves

$w^{*}=0$ hence $x_{5}=0$ we have a starting feasible solution for the initial problem.
- (II phase) We keep only what we need:

Optimal solution: $x_{1}=2, x_{2}=0, x_{3}=0, x_{4}=2, z=2$.

$$
\begin{aligned}
& \max x_{1}-x_{2} \\
& x_{1}+x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \geq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

In Dictionary Form

$$
\begin{aligned}
& \max x_{1}-x_{2} \\
& x_{1}+x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \geq 5 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

$$
\begin{gathered}
x_{3}=2-x_{1}-x_{2} \\
x_{4}=-5+2 x_{1}+2 x_{2} \\
\hdashline z=x_{1}+x_{2} \\
\text { sol. infeasible }
\end{gathered}
$$

We introduce corrections of infeasibility

$$
\begin{aligned}
& \max -x_{0} \equiv \min x_{0} \\
& x_{1}+x_{2}-x_{0} \leq 2 \\
& 2 x_{1}+2 x_{2}-x_{0} \geq 5 \\
& x_{1}, x_{2}, x_{0} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& x_{3}=2-x_{1}-x_{2}+x_{0} \\
& x_{4}=-5+2 x_{1}+2 x_{2}+x_{0} \\
& -z=-x_{0}
\end{aligned}
$$

It is still infeasible but it can be made feasible by letting x_{0} enter the basis which variable should leave? the most infeasible: the var with the b term whose negative value has the largest magnitude

Simplex: Exception Handling, Summary

Handling exceptions in the Simplex Method

1. Unboundedness
2. More than one solution
3. Degeneracies

- benign
- cycling

4. Infeasible starting Phase I + Phase II
a. $F=\emptyset$
b. $F \neq \emptyset$ and \exists solution
i) one solution
ii) infinite solution
c. $F \neq \emptyset$ and \nexists solution

Outline

1. Initialization

2. Duality

Derivation and Motivation
Theory

Outline

1. Initialization

2. Duality

Derivation and Motivation
Theory

Dual Problem

A dual variable y_{i} associated to each constraint:

Primal problem:
$\begin{aligned} \max & =c^{\top} x \\ A x & \leq b \\ x & \geq 0\end{aligned}$

Dual Problem:

$$
\begin{aligned}
\min \quad & =b^{T} y \\
A y & \geq c \\
y & \geq 0
\end{aligned}
$$

Bounding approach

$$
\begin{aligned}
\max 4 x_{1}+x_{2}+3 x_{3} & \\
x_{1}+4 x_{2} & \leq 1 \\
3 x_{1}+x_{2}+x_{3} & \leq 3 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

a feasible solution is a lower bound but how good?
By tentatives:

$$
\begin{aligned}
& \left(x_{1}, x_{2}, x_{3}\right)=(1,0,0) \rightsquigarrow z^{*} \geq 4 \\
& \left(x_{1}, x_{2}, x_{3}\right)=(0,0,3) \rightsquigarrow z^{*} \geq 9
\end{aligned}
$$

What about upper bounds?

$$
\begin{gathered}
\begin{array}{cc}
2 \cdot\left(\begin{array}{c}
\left.x_{1}+4 x_{2}\right)
\end{array}\right) & \leq 2 \cdot 1 \\
+3 \cdot\left(3 x_{1}+x_{2}+x_{3}\right) & \leq 3 \cdot 3 \\
\hline 11 x_{1}+11 x_{2}+3 x_{3} & \leq 11 \\
\hline 4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+11 x_{2}+3 x_{3} & \leq 11 \\
c^{T} x \quad \leq & y^{T} A x
\end{array} \leq y^{T} b
\end{gathered}
$$

Hence $z^{*} \leq 11$. Is this the best upper bound we can find?
multipliers $y_{1}, y_{2} \geq 0$ that preserve sign of inequality

$$
\begin{array}{cl}
y_{1} \cdot\left(\begin{array}{c}
x_{1}+4 x_{2} \\
+y_{2} \cdot\left(3 x_{1}+x_{2}+\right. \\
x_{3}
\end{array}\right) & \leq y_{1}(1) \\
\hline\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}+y_{2}\right) x_{2}+y_{2} x_{3} & \leq y_{1}+3 y_{2}
\end{array}
$$

Coefficients

$$
\begin{aligned}
y_{1}+3 y_{2} & \geq 4 \\
4 y_{1}+y_{2} & \geq 1 \\
y_{2} & \geq 3
\end{aligned}
$$

$z=4 x_{1}+x_{2}+3 x_{3} \leq\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}+y_{2}\right) x_{2}+y_{2} x_{3} \leq y_{1}+3 y_{2}$ then to attain the best upper bound:

$$
\begin{aligned}
\min +3 y_{2} & \\
y_{1}+3 y_{2} & \geq 4 \\
y_{1} & \geq 1 \\
4 y_{1}+y_{2} & \geq 1 \\
y_{2} & \geq 3 \\
y_{1}, y_{2} & \geq 0
\end{aligned}
$$

Multipliers Approach

$$
\begin{gathered}
\pi_{1} \\
\vdots \\
\pi_{m} \\
\pi_{m+1}
\end{gathered}\left[\begin{array}{cccc:ccc:ccc}
a_{11} & a_{12} & \ldots & a_{1 n} & a_{1, n+1} & a_{1, n+2} & \ldots & a_{1, m+n} & 0 & b_{1} \\
\vdots & \ddots & & & & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & a_{m, n+1} & a_{m, n+2} & \ldots & a_{m, m+n} & b_{m} \\
\hdashline c_{1} & c_{2} & \cdots & c_{n} & 0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right]
$$

Working columnwise, since at optimum $\bar{c}_{k} \leq 0$ for all $k=1, \ldots, n+m$:
(since from the last row $z=-\pi b$ and we want to maximize z then we would $\min (-\pi b)$ or equivalently $\max \pi b)$

$$
\begin{aligned}
\max \pi_{1} b_{1} & +\pi_{2} b_{2} \ldots+\pi_{m} b_{m} \\
\pi_{1} a_{11} & +\pi_{2} a_{21} \ldots+\pi_{m} a_{m 1} \leq-c_{1} \\
\vdots & \ddots \\
\pi_{1} a_{1 n} & +\pi_{2} a_{2 n} \ldots+\pi_{m} a_{m n} \leq-c_{n} \\
& \pi_{1}, \pi_{2}, \ldots \pi_{m} \leq 0
\end{aligned}
$$

$$
y=-\pi
$$

$$
\begin{array}{rlrl}
\max & -y_{1} b_{1} & +-y_{2} b_{2} \ldots+-y_{m} b_{m} \\
-y_{1} a_{11} & +-y_{2} a_{21} \ldots+-y_{m} a_{m 1} \leq-c_{1} \\
\vdots & \ddots & \\
-y_{1} a_{1 n} & +-y_{2} a_{2 n} \ldots+-y_{m} a_{m n} \leq-c_{n} \\
& \quad-y_{1},-y_{2}, \ldots-y_{m} \leq 0
\end{array}
$$

$$
\min w=b^{T} y
$$

$$
A^{T} y \geq c
$$

$$
y \geq 0
$$

Example

$$
\begin{aligned}
\max 6 x_{1}+8 x_{2} & \\
5 x_{1}+10 x_{2} & \leq 60 \\
4 x_{1}+4 x_{2} & \leq 40 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
\left\{\begin{aligned}
& 5 \pi_{1}+4 \pi_{2}+6 \pi_{3} \leq 0 \\
& 10 \pi_{1}+4 \pi_{2}+8 \pi_{3} \leq 0 \\
& 1 \pi_{1}+0 \pi_{2}+0 \pi_{3} \leq 0 \\
& 0 \pi_{1}+1 \pi_{2}+0 \pi_{3} \leq 0 \\
& 0 \pi_{1}+0 \pi_{2}+1 \pi_{3}=1 \\
& 60 \pi_{1}+40 \pi_{2}
\end{aligned}\right.
$$

$$
\begin{aligned}
& y_{1}=-\pi_{1} \geq 0 \\
& y_{2}=-\pi_{2} \geq 0
\end{aligned}
$$

Duality Recipe

	Primal linear program	Dual linear program
Variables	$x_{1}, x_{2}, \ldots, x_{n}$	$y_{1}, y_{2}, \ldots, y_{m}$
Matrix	A	A^{T}
Right-hand side	b	c
Objective function	$\max c^{T} \mathbf{x}$	$\min \mathbf{b}^{T} \mathbf{y}$
Constraints	i th constraint has \geq	$\begin{aligned} & y_{i} \geq 0 \\ & y_{i} \leq 0 \\ & y_{i} \in \mathbb{R} \end{aligned}$
	$\begin{aligned} & x_{j} \geq 0 \\ & x_{j} \leq 0 \\ & x_{j} \in \mathbb{R} \\ & \hline \end{aligned}$	$\begin{aligned} j \text { th constraint has } & \geq \\ & \leq \\ & = \end{aligned}$

Outline

1. Initialization

2. Duality

Derivation and Motivation
Theory

Symmetry

The dual of the dual is the primal:

Primal problem:

$$
\begin{aligned}
\max & =c^{\top} x \\
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

Let's put the dual in the usual form
Dual problem:

$$
\begin{aligned}
\min b^{T} y & \equiv-\max -b^{T} y \\
-A y & \leq-c \\
y & \geq 0
\end{aligned}
$$

Dual Problem:

$$
\begin{aligned}
\min \quad w & =b^{T} y \\
A y & \geq c \\
y & \geq 0
\end{aligned}
$$

Dual of Dual:

$$
\begin{aligned}
-\min & c^{\top} x \\
-A x & \geq-b \\
x & \geq 0
\end{aligned}
$$

Weak Duality Theorem

As we saw the dual produces upper bounds. This is true in general:
Theorem (Weak Duality Theorem)
Given:

$$
\begin{aligned}
& \text { (P) } \max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\} \\
& \text { (D) } \min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

for any feasible solution x of (P) and any feasible solution y of (D) :

$$
c^{T} x \leq b^{T} y
$$

Proof:
From (D) $c_{j} \leq \sum_{i=1}^{m} y_{i} a_{i j} \forall j$ and $x_{j} \geq 0$.
From (P) $b_{i} \geq \sum_{j=1}^{n} a_{i j} x_{i} \forall j$ and $y_{i} \geq 0$

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} y_{i} a_{i j}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{i}\right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

Strong Duality Theorem

Theorem (Strong Duality Theorem) (Gale, Kuhn, Tucker, 1951; Dantzig, Von Neumann, 1947))
Given:

$$
\begin{aligned}
& \text { (P) } \max \left\{c^{\top} x \mid A x \leq b, x \geq 0\right\} \\
& \text { (D) } \min \left\{b^{T} y \mid A^{T} y \geq c, y \geq 0\right\}
\end{aligned}
$$

exactly one of the following occurs:

1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution $x^{*}=\left[x_{1}^{*}, \ldots, x_{n}^{*}\right]$
(D) has feasible solution $y^{*}=\left[y_{1}^{*}, \ldots, y_{m}^{*}\right]$

$$
c^{T} x^{*}=b^{T} y^{*}
$$

Proof:

- all other combinations of 3 possibilities (Optimal, Infeasible, Unbounded) for (P) and 3 for (D) are ruled out by weak duality theorem.
- we use the simplex method. (Other proofs independent of the simplex method exist, eg, Farkas Lemma and convex polyhedral analysis)
- The last row of the final tableau will give us

$$
\begin{align*}
z & =z^{*}+\sum_{k=1}^{n+m} \bar{c}_{k} x_{k}=z^{*}+\sum_{j=1}^{n} \bar{c}_{j} x_{j}+\sum_{i=1}^{m} \bar{c}_{n+i} x_{n+i} \tag{*}\\
& =z^{*}+\bar{c}_{B} x_{B}+\bar{c}_{N} x_{N}
\end{align*}
$$

In addition, $z^{*}=\sum_{j=1}^{n} c_{j} x_{j}^{*}$ because optimal value

- We define $y_{i}^{*}=-\bar{c}_{n+i}, i=1,2, \ldots, m$
- We claim that $\left(y_{1}^{*}, y_{2}^{*}, \ldots, y_{m}^{*}\right)$ is a dual feasible solution satisfying $c^{T} x^{*}=b^{T} y^{*}$.
- Let's verify the claim:

We substitute in $\left(^{*}\right) \sum c_{j} x_{j}$ for z and $x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}$ for $i=1,2, \ldots, m$ for slack variables

$$
\begin{aligned}
\sum c_{j} x_{j} & =z^{*}+\sum_{j=1}^{n} \bar{c}_{j} x_{j}-\sum_{i=1}^{m} y_{i}^{*}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right) \\
& =\left(z^{*}-\sum_{i=1}^{m} y_{i}^{*} b_{i}\right)+\sum_{j=1}^{n}\left(\bar{c}_{j}+\sum_{i=1}^{m} a_{i j} y_{i}^{*}\right) x_{j}
\end{aligned}
$$

This must hold for every $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ hence:

$$
\begin{aligned}
& z^{*}=\sum_{i=1}^{m} b_{i} y_{i}^{*} \Longrightarrow y^{*} \text { satisfies } c^{T} x^{*}=b^{T} y^{*} \\
& c_{j}=\bar{c}_{j}+\sum_{i=1}^{m} a_{i j} y_{i}^{*}, j=1,2, \ldots, n
\end{aligned}
$$

Since $\bar{c}_{k} \leq 0$ for every $k=1,2, \ldots, n+m$:

$$
\begin{array}{rlrl}
\bar{c}_{j} \leq 0 \rightsquigarrow & c_{j}-\sum_{i=1}^{m} y_{i}^{*} a_{i j} \leq 0 \rightsquigarrow & \sum_{i=1}^{m} y_{i}^{*} a_{i j} \geq c_{j} & j=1,2, \ldots, n \\
\bar{c}_{n+i} \leq 0 \rightsquigarrow & y_{i}^{*}=-\hat{c}_{n+i} \geq 0, & & i=1,2, \ldots, m
\end{array}
$$

$\Longrightarrow y^{*}$ is also dual feasible solution

Complementary Slackness Theorem

Theorem (Complementary Slackness)
A feasible solution x^{*} for (P)
A feasible solution y^{*} for (D)
Necessary and sufficient conditions for optimality of both:

$$
\left(c_{j}-\sum_{i=1}^{m} y_{i}^{*} a_{i j}\right) x_{j}^{*}=0, \quad j=1, \ldots, n
$$

If $x_{j}^{*} \neq 0$ then $\sum y_{i}^{*} a_{i j}=c_{j}$ (no surplus)
If $\sum y_{i}^{*} a_{i j}>c_{j}$ then $x_{j}^{*}=0$

Proof:

$$
z^{*}=c x^{*} \leq y^{*} A x^{*} \leq b y^{*}=w^{*}
$$

Hence from strong duality theorem:

$$
c x^{*}-y A x^{*}=0
$$

In scalars

Hence each term must be $=0$

Duality - Summary

- Derivation:
- Bounding Approach
- Multiplers Approach
- Recipe
- Lagrangian Multipliers Approach (next time)
- Theory:
- Symmetry
- Weak Duality Theorem
- Strong Duality Theorem
- Complementary Slackness Theorem

