DM545
 Linear and Integer Programming

Lecture 5
 Duality Sensitivity Analysis

Marco Chiarandini

Department of Mathematics \& Computer Science
University of Southern Denmark

Outline

1. Duality

Lagrangian Duality Dual Simplex

Outline

1. Duality

Lagrangian Duality
Dual Simplex

Outline

1. Duality

Lagrangian Duality Dual Simplex

Lagrangian Duality

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then search strongest bounds.

$$
\begin{array}{r}
\min 13 x_{1}+6 x_{2}+4 x_{3}+12 x_{4} \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=7 \\
3 x_{1}+\quad+2 x_{3}+4 x_{4}=2 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

We wish to reduce to a problem easier to solve, ie:

$$
\begin{array}{r}
\min c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{array}
$$

solvable by inspection: if $c<0$ then $x=+\infty$, if $c \geq 0$ then $x=0$. measure of violation of the constraints:

$$
\begin{aligned}
& 7-\left(2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}\right) \\
& 2-\left(3 x_{1}+\quad+2 x_{3}+4 x_{4}\right)
\end{aligned}
$$

We relax these measures in the obj. function with Lagrangian multipliers y_{1}, y_{2}.
We obtain a family of problems:

$$
P R\left(y_{1}, y_{2}\right)=\min _{x_{1}, x_{2}, x_{3}, x_{4} \geq 0}\left\{\begin{array}{r}
13 x_{1}+6 x_{2}+4 x_{3}+12 x_{4} \\
+y_{1}\left(7-2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}\right) \\
+y_{2}\left(2-3 x_{1}+\quad+2 x_{3}+4 x_{4}\right)
\end{array}\right\}
$$

1. for all $y_{1}, y_{2} \in \mathbb{R}: \operatorname{opt}\left(P R\left(y_{1}, y_{2}\right)\right) \leq \operatorname{opt}(P)$
2. $\max _{y_{1}, y_{2} \in \mathbb{R}}\left\{\operatorname{opt}\left(P R\left(y_{1}, y_{2}\right)\right)\right\} \leq \operatorname{opt}(P)$

PR is easy to solve.
(It can be also seen as a proof of the weak duality theorem)

$$
P R\left(y_{1}, y_{2}\right)=\min _{x_{\mathbf{1}}, x_{2}, x_{3}, x_{4} \geq 0}\left\{\begin{array}{c}
\left(13-2 y_{2}-3 y_{2}\right) x_{1} \\
+\left(6-3 y_{1}\right) x_{2} \\
+\left(4 \quad-2 y_{2}\right) x_{3} \\
+\left(12-5 y_{1}-4 y_{2}\right) x_{4} \\
+ \\
7 y_{1}+2 y_{2}
\end{array}\right\}
$$

if coeff. of x is <0 then bound is $-\infty$ then LB is useless

$$
\begin{aligned}
\left(13-2 y_{2}-3 y_{2}\right) & \geq 0 \\
\left(6-3 y_{1}\right) & \geq 0 \\
\left(4-2 y_{2}\right) & \geq 0 \\
\left(12-5 y_{1}-4 y_{2}\right) & \geq 0
\end{aligned}
$$

If they all hold then we are left with $7 y_{1}+2 y_{2}$ because all go to 0 .

$$
\begin{aligned}
\max 7 y_{1}+2 y_{2} & \\
2 y_{2}+3 y_{2} & \leq 13 \\
3 y_{1} & \leq 6 \\
+2 y_{2} & \leq 4 \\
5 y_{1}+4 y_{2} & \leq 12
\end{aligned}
$$

General Formulation

$$
\begin{aligned}
\min \quad z & =c^{T} x c \in \mathbb{R}^{n} \\
A x & =b \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
x & \geq 0 \quad x \in \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \max _{y \in \mathbb{R}^{m}}\left\{\min _{x \in \mathbb{R}_{+}^{n}}\{c x+y(b-A x)\}\right\} \\
& \max _{y \in \mathbb{R}^{m}}\left\{\min _{x \in \mathbb{R}_{+}^{n}}\{(c-y A) x+y b\}\right\}
\end{aligned}
$$

$\max b^{T} y$

$$
A^{T} y \leq c
$$

Outline

1. Duality

Lagrangian Duality
Dual Simplex

Dual Simplex

Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableaux:

- Primal works with feasible solutions towards optimality
- Dual works with optimal solutions towards feasibility

Primal simplex on primal problem:

1. pivot >0
2. col c_{j} with wrong sign
3. row:

$$
\min \left\{\frac{b_{i}}{a_{i j}}: a_{i j}>0, i=1, \ldots, m\right\}
$$

Dual simplex on primal problem:

1. pivot <0
2. row $b_{i}<0$ (condition of feasibility)
3. col:
$\min \left\{\left|\frac{c_{j}}{a_{i j}}\right|: a_{i j}<0, j=1,2, . ., n+m\right\}$
(least worsening solution)

It can work better in some cases than the primal.
Eg. since running time in practice between $2 m$ and $3 m$, then if $m=99$ and
$n=9$ then better the dual
Dual based Phase I algorithm (Dual-primal algorithm) (see Sheet 3)

Dual Simplex

Example

Primal:

$$
\max \begin{aligned}
&-x_{1}-x_{2} \\
&-2 x_{1}-x_{2} \leq 4 \\
&-2 x_{1}+4 x_{2} \leq \leq 8 \\
&-x_{1}+3 x_{2} \leq-7 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Dual:

$$
\min \begin{aligned}
& 4 y_{1}-8 y_{2}-7 y_{3} \\
&-2 y_{1}-2 y_{2}-y_{3} \geq-1 \\
&-y_{1}+4 y_{2}+3 y_{3} \geq-1 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

- Initial tableau

infeasible start
- x_{1} enters, w_{2} leaves
- Initial tableau (min by \equiv - max - by)

feasible start (thanks to $-x_{1}-x_{2}$)
- y_{2} enters, z_{1} leaves
- x_{1} enters, w_{2} leaves

- w_{2} enters, w_{3} leaves (note that we kept $c_{j}<0$, ie, optimality)

- y_{2} enters, z_{1} leaves

- y_{3} enters, y_{2} leaves

Economic Interpretation

$$
\begin{aligned}
& \max 5 x_{0}+6 x_{1}+8 x_{2} \\
& 6 x_{0}+5 x_{1}+10 x_{2} \leq 60 \\
& 8 x_{0}+4 x_{1}+4 x_{2} \leq 40 \\
& 4 x_{0}+5 x_{1}+6 x_{2} \leq 50 \\
& \\
& \quad x_{0}, x_{1}, x_{2} \geq 0
\end{aligned}
$$

final tableau:

- Which are the values of variables, the reduced costs, the shadow prices (or marginal price), the values of dual variables?
- If one slack variable >0 then overcapacity
- How many products can be produced at most? at most m
- How much more expensive a product not selected should be? look at reduced costs: $c-\pi A>0$
- What is the value of extra capacity of manpower? In $1+1$ out $1 / 5+1$

Game: Suppose two economic operators:

- P owns the factory and produces goods
- D is the market buying and selling raw material and resources
- D asks P to close and sell him all resources
- P considers if the offer is convenient
- D wants to spend less possible
- y are prices that D offers for the resources
- $\sum y_{i} b_{i}$ is the amount D has to pay to have all resources of P
- $\sum y_{i} a_{i j} \geq c_{j}$ total value to make $j>$ price per unit of product
- P either sells all resources $\sum y_{i} a_{i j}$ or produces product $j\left(c_{j}\right)$
- without \geq there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- for product $0 \sum y_{i} a_{i j}>c_{j}$ hence not profitable producing it. (complementary slackness th.)

Summary

- Derivation:

1. bounding
2. multipliers
3. recipe
4. Lagrangian (to do)

- Theory:
- Symmetry
- Weak duality theorem
- Strong duality theorem
- Complementary slackness theorem
- Dual Simplex
- Economic interpretation

