DM545 Linear and Integer Programming

Lecture 5 Duality Sensitivity Analysis

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Duality

1. Duality

Lagrangian Duality Dual Simplex

1. Duality

Lagrangian Duality Dual Simplex

Duality

1. Duality Lagrangian Duality Dual Simplex

Lagrangian Duality

Relaxation: if a problem is hard to solve then find an easier problem resembling the original one that provides information in terms of bounds. Then search strongest bounds.

 $\begin{array}{rl} \min 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ 2x_1 + 3x_2 + 4x_3 & + & 5x_4 = 7 \\ 3x_1 + & + 2x_3 & + & 4x_4 = 2 \\ & & x_1, x_2, x_3, x_4 \ge 0 \end{array}$

We wish to reduce to a problem easier to solve, ie:

$$\min c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$
$$x_1, x_2, \ldots, x_n \ge 0$$

solvable by inspection: if c < 0 then $x = +\infty$, if $c \ge 0$ then x = 0. measure of violation of the constraints:

$$7 - (2x_1 + 3x_2 + 4x_3 + 5x_4) 2 - (3x_1 + + 2x_3 + 4x_4)$$

We relax these measures in the obj. function with Lagrangian multipliers y_1 , y_2 . We obtain a family of problems:

$$PR(y_1, y_2) = \min_{x_1, x_2, x_3, x_4 \ge 0} \begin{cases} 13x_1 + 6x_2 + 4x_3 + 12x_4 \\ +y_1(7 - 2x_1 + 3x_2 + 4x_3 + 5x_4) \\ +y_2(2 - 3x_1 + 2x_3 + 4x_4) \end{cases}$$

- 1. for all $y_1, y_2 \in \mathbb{R}$: $opt(PR(y_1, y_2)) \leq opt(P)$
- 2. $\max_{y_1, y_2 \in \mathbb{R}} \{ \operatorname{opt}(PR(y_1, y_2)) \} \le \operatorname{opt}(P)$

PR is easy to solve.

(It can be also seen as a proof of the weak duality theorem)

$$PR(y_1, y_2) = \min_{x_1, x_2, x_3, x_4 \ge 0} \begin{cases} (13 - 2y_2 - 3y_2) x_1 \\ + (6 - 3y_1) x_2 \\ + (4 - 2y_2) x_3 \\ + (12 - 5y_1 - 4y_2) x_4 \\ + 7y_1 + 2y_2 \end{cases}$$

if coeff. of x is < 0 then bound is $-\infty$ then LB is useless

$$\begin{array}{l} (13 - 2y_2 - 3y_2) \geq 0\\ (6 - 3y_1 \quad) \geq 0\\ (4 \quad -2y_2) \geq 0\\ (12 - 5y_1 - 4y_2) \geq 0 \end{array}$$

If they all hold then we are left with $7y_1 + 2y_2$ because all go to 0.

$$\begin{array}{rl} \max 7y_1 + 2y_2 \\ 2y_2 + 3y_2 \leq 13 \\ 3y_1 & \leq 6 \\ + 2y_2 \leq 4 \\ 5y_1 + 4y_2 \leq 12 \end{array}$$

General Formulation

min
$$z = c^T x \ c \in \mathbb{R}^n$$

 $Ax = b \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
 $x \ge 0 \quad x \in \mathbb{R}^n$

$$\max_{y \in \mathbb{R}^m} \{ \min_{x \in \mathbb{R}^n_+} \{ cx + y(b - Ax) \} \}$$
$$\max_{y \in \mathbb{R}^m} \{ \min_{x \in \mathbb{R}^n_+} \{ (c - yA)x + yb \} \}$$

$$\max \begin{array}{c} b^T y \\ A^T y \\ y \in \mathbb{R}^m \end{array} \leq c$$

Duality

1. Duality Lagrangian Duality Dual Simplex

Dual Simplex

Dual simplex (Lemke, 1954): apply the simplex method to the dual problem and observe what happens in the primal tableaux:

- Primal works with feasible solutions towards optimality
- Dual works with optimal solutions towards feasibility

Primal simplex on primal problem: Dual simplex on primal problem:

```
1. pivot > 0
```

- 2. col c_i with wrong sign
- 3. row: $\min \left\{ \frac{b_i}{a_{ii}} : a_{ij} > 0, i = 1, ..., m \right\}$

2. row $b_i < 0$ (condition of feasibility)

3. col:

$$\min \left\{ \left| \frac{c_j}{a_{ij}} \right| : a_{ij} < 0, j = 1, 2, .., n + m \right\}$$
(least worsening solution)

It can work better in some cases than the primal.

Eg. since running time in practice between 2m and 3m, then if m = 99 and n = 9 then better the dual Dual based Phase I algorithm (Dual-primal algorithm) (see Sheet 3)

Dual Simplex

Primal:

Dual:

$$\begin{array}{rl} \min & 4y_1 - 8y_2 - 7y_3 \\ -2y_1 - 2y_2 - y_3 \geq -1 \\ -y_1 + 4y_2 + 3y_3 \geq -1 \\ y_1, y_2, y_3 \geq 0 \end{array}$$

Initial tableau

| x1 | x2 | w1 | w2 | w3 | -z | b | -2 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 4 I 0 | -8 3 0 0 1 | -1 | 0 | -7 | -1 | -1 | 0 0 0 0 0 1 1 1 0

infeasible start

► x₁ enters, w₂ leaves

• Initial tableau (min $by \equiv -max - by$)

1		y1	Т	y2	Т	yЗ	Ι	z1	Т	z2	Ι	-p	Т	b	Т
++++++															
1		2	I.	2	I.	1	Ι	1	T	0	Ι	0	T	1	Т
1		1	I.	-4	Т	-3	T	0	T	1	T	0	T	1	Т
+++++														-1	
1	Т	-4	I	8	I	7	I	0	I	0	I	1	I	0	I

feasible start (thanks to $-x_1 - x_2$)

 \blacktriangleright y₂ enters, z₁ leaves

Duality

\blacktriangleright x₁ enters, w₂ leaves

1	1	x1	Т	x2	I	w1	L	w2	Т	wЗ	I	-z	L	b	T
+++++++++														٠I	
1	- 1	0	Т	-5	I	1	I	-1	I.	0	I	0	I	12	I
1	- 1	1	Т	-2	I	0	I	-0.5	I.	0	I	0	I	4	I
1	1	0	Т	1	I	0	L	-0.5	I.	1	I	0	L	-3	I
++++++++														٠I	
1	1	0	Т	-3	I.	0	Т	-0.5	Т	0	I.	1	Т	4	I

▶ w₂ enters, w₃ leaves (note that we kept c_i < 0, ie, optimality)</p>

I		L	x1	Т	x2	T	w1	T	w2	Т	wЗ	T	-z	T	ъ	I
I		+-		+		+-		+-		+		+-		+-		۰I
I		L	0	Т	-7	T	1	Т	0	Т	-2	T	0	Т	18	I
I		L	1	Т	-3	T	0	Т	0	Т	-1	T	0	Т	7	I
I		L	0	Т	-2	T	0	Т	1	Т	-2	I.	0	Т	6	I
I	+++++++															٠I
I		L	0	T.	-4	T.	0	T	0	T.	-1	T.	1	T	7	T

► y₂ enters, z₁ leaves

▶ y₃ enters, y₂ leaves

I	- I	y1	1	y2	I	yЗ	T	z1	L	z2	L	-p	T	b	I
I	+-		-+		-+-		+		-+-		+-		+-		ŀ
I	- I	2	1	2	I	1	T	1	T	0	T	0	T	1	I
I	- I	7	1	2	I	0	T	3	L	1	L	0	T	3	I
I	+-		-+		-+-		+		-+-		+-		+-		١
I	1	-18	1	-6	I	0	T	-7	Т	0	T	1	T	-7	I

Economic Interpretation

final tableau:

- Which are the values of variables, the reduced costs, the shadow prices (or marginal price), the values of dual variables?
- If one slack variable > 0 then overcapacity
- ▶ How many products can be produced at most? at most *m*
- ► How much more expensive a product not selected should be? look at reduced costs: $c \pi A > 0$
- ▶ What is the value of extra capacity of manpower? In 1+1 out 1/5+1

Duality

Game: Suppose two economic operators:

- P owns the factory and produces goods
- ▶ D is the market buying and selling raw material and resources
- D asks P to close and sell him all resources
- P considers if the offer is convenient
- D wants to spend less possible
- y are prices that D offers for the resources
- $\sum y_i b_i$ is the amount D has to pay to have all resources of P
- $\sum y_i a_{ij} \ge c_j$ total value to make j > price per unit of product
- ▶ P either sells all resources $\sum y_i a_{ij}$ or produces product j (c_j)
- ▶ without ≥ there would not be negotiation because P would be better off producing and selling
- at optimality the situation is indifferent (strong th.)
- resource 2 that was not totally utilized in the primal has been given value 0 in the dual. (complementary slackness th.) Plausible, since we do not use all the resource, likely to place not so much value on it.
- ▶ for product 0 ∑ y_ia_{ij} > c_j hence not profitable producing it. (complementary slackness th.)

Summary

- Derivation:
 - 1. bounding
 - 2. multipliers
 - 3. recipe
 - 4. Lagrangian (to do)
- Theory:
 - Symmetry
 - Weak duality theorem
 - Strong duality theorem
 - Complementary slackness theorem
- Dual Simplex
- Economic interpretation

Duality