
DM545

Linear and Integer Programming

Lecture 7
Revised Simplex Method

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Revised Simplex Method
Efficiency IssuesOutline

1. Revised Simplex Method

2. Efficiency Issues

2

Revised Simplex Method
Efficiency IssuesOutline

1. Revised Simplex Method

2. Efficiency Issues

3

Revised Simplex Method
Efficiency IssuesRevised Simplex Method

Crucial: pivoting (ie, updating) the tableaux is the most costly part.
Several ways to carry out this efficiently, requires matrix description of
simplex.

I max{cT x | Ax ≤ b, x ≥ 0}
I B = {1 . . .m}
I N = {n + 1 . . . n + m}
I AB = [A1 . . .Am]

I AN = [An+1 . . .An+m]

Standard form AN AB 0 b

cN cB 1 0



4

Revised Simplex Method
Efficiency Issues

Ax = ANxN + ABxB = b
ABxB = b − ANxN

xB = A−1
B b − A−1

B ANxN

basic feasible solution:
I XN = 0
I AB lin. indep.
I XB ≥ 0

z = cx = cB(A−1
B b − A−1

B ANxN) + cNxN =

= cBA−1
B b + (cN − cB A−1

B AN︸ ︷︷ ︸
Ā

)xN

Canonical form A−1
B AN I 0 A−1

B b

cT
N − CT

B A−1
B AN 0 1 −cT

B A−1
B b


We do not need to compute all elements of Ā

5

Revised Simplex Method
Efficiency IssuesExample

max x1 + x2

−x1 + x2 ≤ 1
x1 ≤ 3

x2 ≤ 2
x1, x2 ≥ 0

max x1 + x2

−x1 + x2 + x3 = 1
x1 + x4 = 3

x2 + x5 = 2
x1, x2, x3, x4, x5 ≥ 0

| x1 | x2 | x3 | x4 | x5 | -z | b |
|----+----+----+----+----+----+---|
-1	1	1	0	0	0	1
1	0	0	1	0	0	3
0	1	0	0	1	0	2
----+----+----+----+----+----+---						
1	1	0	0	0	1	0

After two iterations
| x1 | x2 | x3 | x4 | x5 | -z | b |
|----+----+----+----+----+----+---|
1	0	1	0	-1	0	1
0	1	0	0	-1	0	2
0	0	-1	1	1	0	2
----+----+----+----+----+----+---						
0	0	1	0	-2	1	3

6

Revised Simplex Method
Efficiency Issues

I Basic variables x1, x2, x4. Non basic: x3, x5

AB =

−1 1 0
1 0 1
0 1 0

 AN =

1 0
0 0
0 1

 xB =

x1
x2
x4

 xN =

[
x3
x5

]

cB =
[
1 1 0

]
cN =

[
0 0
]

I Entering variable:
in std. we look at tableau, in revised we need to compute: cN − cBA−1

B AN

1. find y = cBA−1
B (by solving yAB = cB , the latter can be done more

efficiently)
2. calculate cN − yTAN

7

Revised Simplex Method
Efficiency Issues

Step 1:

[
y1 y2 y3

] −1 1 0
1 0 1
0 1 0

 =
[
1 1 0

]

[
1 1 0

] −1 0 1
0 0 1
1 1 −1

 =

−10
2


Step 2:

[
0 0
]
−
[
−1 0 2

] 1 0
0 0
0 1

 =
[
1 −2

]
(Note that they can be computed individually: cj − yaij > 0)
Let’s take the first we encounter x3

8

I Leaving variable
we increase variable by largest feasible amount θ

I: x1 + x3 − x5 = 1 x1 = 1− x3

II: x2 + 0x3 − x5 = 2 −−
III: − x3 + x4 + x5 = 2 x4 = 2 + x3

xB = x∗
B − A−1

B ANxN

xB = x∗
B − dθ

d is the column of A−1
B AN that

corresponds to the entering variable,
ie, d = A−1

B a where a is the entering
column

3. Find θ such that xB stays positive:
Find d = A−1

B a (by solving ABd = a)

Step 3:

d1
d2
d3

 =

−1 0 1
0 0 1
1 1 −1

10
0

 =⇒ d =

−10
1

 =⇒ xB =

12
2

−
−10

1

 θ ≥ 0

2− θ ≥ 0 =⇒ θ ≤ 2 x4 leaves

Revised Simplex Method
Efficiency Issues

I So far we have done computations, but now we save the pivoting
update. The update of AB is done by replacing the leaving column by
the entering column.

x∗
B =

x1 − d1θ
x2 − d2θ

θ

 =

32
2

 AB =

−1 1 1
1 0 0
0 1 0



I Many implementations depending on how yAB = cB and ABd = a are
solved. They are in fact solved from scratch.

I many operations saved especially if many variables!

I special ways to call the matrix A from memory

I better control over numerical issues since A−1
B can be recomputed.

10

Revised Simplex Method
Efficiency IssuesOutline

1. Revised Simplex Method

2. Efficiency Issues

11

Revised Simplex Method
Efficiency IssuesSolving the two Systems of Equations

ABx = b solved without computing A−1
B

(costly and likely to introduce numerical inaccuracy)

Recall how the inverse is computed:
For a 2× 2 matrix

A =

[
a b
c d

] the matrix inverse is

A−1 =
1
|A|

[
d −c
−b a

]T

=
1

ad − bc

[
d −b
−c a

]
For a 3× 3 matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


the matrix inverse is

A−1 =
1
|A|



+

∣∣∣∣a22 a23

a32 a33

∣∣∣∣ − ∣∣∣∣a21 a23

a31 a33

∣∣∣∣ + ∣∣∣∣a21 a22

a31 a32

∣∣∣∣
−
∣∣∣∣a12 a13

a32 a33

∣∣∣∣ + ∣∣∣∣a11 a13

a31 a33

∣∣∣∣ − ∣∣∣∣a11 a12

a31 a32

∣∣∣∣
+

∣∣∣∣a12 a13

a22 a23

∣∣∣∣ − ∣∣∣∣a11 a13

a21 a23

∣∣∣∣ + ∣∣∣∣a11 a12

a21 a22

∣∣∣∣



T

12

Revised Simplex Method
Efficiency IssuesEta Factorization of the Basis

Let AB = B, kth iteration
Bk be the matrix with col p differing from Bk−1
Column p is the a column appearing in Bk−1d = a solved at 3)
Hence:

Bk = Bk−1Ek

Ek is the eta matrix differing from id. matrix in only one column−1 1 1
1 0 0
0 1 0

 =

−1 1 0
1 0 1
0 1 0

1 −1
1 0

1


No matter how we solve yBk−1 = cB and Bk−1d = a, their update always
relays on Bk = Bk−1Ek with Ek available.
Plus when initial basis by slack variable B0 = I and B1 = E1,B2 = E1E2 · · · :

Bk = E1E2 . . .Ek eta factorization

((((yE1)E2)E3) · · ·)Ek = cB , uE4 = cB , vE3 = u, wE2 = v , yE1 = w
(E1(E2 · · ·Ekd)) = a, E1u = a, E2v = u, E3w = v , E4d = w

13

Revised Simplex Method
Efficiency IssuesLU factorization

Worth to consider also the case of B0 6= I :

Bk = B0E1E2 . . .Ek eta factorization

((((yB0)E1)E2) · · ·)Ek = cB

(B0(E1 · · ·Ekd)) = a

We need an LU factorization of B0

14

Revised Simplex Method
Efficiency IssuesLU Factorization

To solve the system Ax = b by Gaussian Elimination we put the A matrix in
row echelon form by means of elemntary row operations. Each row operation
corresponds to multiply left and right side by a lower triangular matrix L and
a permuation matrix P. Hence, the method:

Ax = b
L1P1Ax = L1P1b

L2P2L1P1Ax = L2P2L1P1b
...

LmPm . . .L2P2L1P1Ax = LmPm . . .L2P2L1P1b

thus

U = LmPm . . .L2P2L1P1A triangular factorization of A

where U is an upper triangular matrix whose entries in the diagonal are ones.
(if A is nonsingular such triangularization is unique)

[see numerical example in Va sc 8.1]
15

We can compute the triangular factorization of B0 before the initial iterations
of the simplex:

LmPm . . .L2P2L1P1B0 = U

We can then rewrite U as

U = UmUm−1 . . . ,U1

with each Uj standing for the eta matrix obtained when the jth column of I
is replaced by the jth column of U. Hence:

LmPm . . .L2P2L1P1Bk = UmUm−1 . . .U1

Then yBk = cB can be solved by first solving:

((((yUm)Um−1) · · ·)Ek = cB

and then replacing y by (yLmPm) · · ·)L1P1.
Ei matrices can be stored by only storing the column and the position. If
sparse columns then can be stored in compact mode, ie only nonzero values
and their indices. Same for the triangular eta matrices Lj , Uj while for Pj just
two indices are needed.

Revised Simplex Method
Efficiency Issues

I Solving yBk = cB also called backward transformation (BTRAN)

I Solving Bkd = a also called forward transformation (FTRAN)

17

Revised Simplex Method
Efficiency IssuesMore on LP

I Tableau method is unstable: computational errors may accumulate.
Revised method has a natural control mechanism: we can recompute
AB−1 at any time

I Commercial and freeware solvers differ from the way the systems
y = cBA−1

B and ABd = a are resolved

19

Revised Simplex Method
Efficiency IssuesEfficient Implementations

I Dual simplex with steepest descent

I Linear Algebra:
I Dynamic LU-factorization using Markowitz threshold pivoting (Suhl and

Suhl, 1990)
I sparse linear systems: Typically these systems take as input a vector with

a very small number of nonzero entries and output a vector with only a
few additional nonzeros.

I Presolve, ie problem reductions: removal of redundant constraints, fixed
variables, and other extraneous model elements.

I dealing with degeneracy, stalling (long sequences of degenerate pivots),
and cycling:

I bound-shifting (Paula Harris, 1974)
I Hybrid Pricing (variable selection): start with partial pricing, then switch

to devex (approximate steepest-edge, Harris, 1974)

I A model that might have taken a year to solve 10 years ago can now
solve in less than 30 seconds (Bixby, 2002).

20

Revised Simplex Method
Efficiency IssuesFurther topics in LP

I Ellipsoid method: cannot compete in practice but polynomial time
(Khachyian, 1979)

I Interior point algorithm(s) (Karmarkar, 1984) competitive with simplex
and polynomial in some versions

I iterate through points interior to the feasibility region
I because of patents reasons, also known as barrier algorithm
I one single iteration is computationally more intensive than the simplex
I particularly competitive in presence of many constraints (eg, for

m = 10, 000 may need less than 100 iterations)
I bad for post-optimality analysis crossover algorithm to convert a sol of

barrier method into a basic feasible solutions for the simplex

I Lagrangian relaxation
I Column generation
I Decomposition methods:

I Dantzig Wolfe decomposition
I Benders decomposition

21

Revised Simplex Method
Efficiency IssuesInterior Point Algorithm

1. Start at an interior point of the feasible region

2. Move in a direction that improves the objective function value at the
fastest possible rate

3. Transform the feasible region to place the current point at the center of
it

22

Revised Simplex Method
Efficiency IssuesHow Large Problems Can We Solve?

Source: Bixby, 2002

23

	Revised Simplex Method
	Efficiency Issues

