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Relaxations
Well Solved ProblemsTraveling Salesman Problem

I Find the cheapest movement for a drilling, welding, drawing, soldering
arm as, for example, in a printed circuit board manufacturing process or
car manufacturing process

I n locations, cij cost of travel

Variables:

xij =

{
1
0

Objective:

n∑
i=1

n∑
j=1

cijxij
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Constraints:

I ∑
j :j 6=i

xij = 1 ∀i = 1, . . . , n

∑
i :i 6=j

xij = 1 ∀j = 1, . . . , n

I cut set constraints∑
i∈S

∑
j 6∈S

xij ≥ 1 ∀S ⊂ N, S 6= ∅

I subtour elimination constraints∑
i∈S

∑
j∈S

xij ≤ |S | − 1 ∀S ⊂ N, 2 ≤ |S | ≤ n − 1
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Objective function and/or constraints do not appear to be linear?
I Absolute values
I Minimize the largest function value
I Maximize the smallest function value
I Constraints include variable division
I Constraints are either/or
I A variable must take one of several candidate values
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Minimize the largest of a number of function values:

min max{f (x1), . . . , f (xn)}

I Introduce an auxiliary variable X :
min X
s. t. f (x1) ≤ X

f (x2) ≤ X
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Constraints include variable division:
I Constraint of the form

a1x + a2y + a3z
d1x + d2y + d3z

≤ b

I Rearrange:

a1x + a2y + a3z ≤ b(d1x + d2y + d3z)

which gives:

(a1 − bd1)x + (a2 − bd2)y + (a3 − bd3)z ≤ 0

12



Modeling
Formulations
Relaxations
Well Solved ProblemsIII “Either/Or Constraints”

In conventional mathematical models, the solution must satisfy all
constraints.
Suppose that your constraints are “either/or”:

a1x1 + a2x2 ≤ b1 or
d1x1 + d2x2 ≤ b2

Introduce new variable y ∈ {0, 1} and a large number M:

a1x1 + a2x2 ≤ b1 + My if y = 0 then this is active
d1x1 + d2x2 ≤ b2 + M(1− y) if y = 1 then this is active
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Binary integer programming allows to model alternative choices:

I Eg: 2 feasible regions, ie, disjunctive constraints, not possible in LP.
introduce y auxiliary binary variable and M a big number:

Ax ≤ b + My if y = 0 then this is active
A′x ≤ b′ + M(1− y) if y = 1 then this is active
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Generally:

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN

Exactly K of the N constraints must be satisfied.
Introduce binary variables y1, y2, . . . , yN and a large number M

a11x1 + a12x2 + a13x3 + . . .+ a1mxm ≤ d1 + My1
a21x1 + a22x2 + a23x3 + . . .+ a2mxm ≤ d2 + My2

...
am1x1 + aN2x2 + aN3x3 + . . .+ aNmxm ≤ dN + MyN

y1 + y2 + . . . yN = N − K

K of the y -variables is 0, so K constraints must be satisfied
15
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At least h ≤ k of
n∑

j=1
aijxj ≤ bi , i = 1, . . . , k must be satisfied

introduce yi , i = 1, ..., k auxiliary binary variables

n∑
j=1

aijxj ≤ bi + Myi∑
i

yi ≤ k − h
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A constraint must take on one of N given values:

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1 or
a1x1 + a2x2 + a3x3 + . . .+ amxm = d2 or

...
a1x1 + a2x2 + a3x3 + . . .+ amxm = dN

Introduce binary variables y1, y2, . . . , yN :

a1x1 + a2x2 + a3x3 + . . .+ amxm = d1y1 + d2y2 + . . . dNyN

y1 + y2 + . . . yN = 1
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Given:
I depots N = {1, . . . , n}
I clients M = {1, . . . ,m}
I fj fixed cost to use depot j
I transport cost for all orders cij

Task: Which depots to open and which
depots serve which client

Variables: yj =

{
1 if depot open

0 otherwise
, xij fraction of demand of i satisfied by j

Objective:

min
∑
i∈M

∑
j∈N

cijxij +
∑
j∈N

fjyj

Constraints:
n∑

j=1

xij = 1 ∀i = 1, . . . ,m

∑
i∈M

xij ≤ myj ∀j ∈ N
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Definition (Formulation)

A polyhedron P ⊆ Rn+p is a formulation for a set X ⊆ Zn × Rp if and only if
X = P ∩ (Zn × Rp)

That is, if it does not leave out any of the solutions of the feasible region X .

There are infinite formulations

Definition (Convex Hull)

Given a set X ⊆ Zn the convex hull of X is defined as:

conv(X ) =

{
x : x =

t∑
i=1

λix i ,

t∑
i=1

λi = 1, λi ≥ 0, for i = 1, . . . , t,

for all finite subsets {x1, . . . , x t} of X
}
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Proposition

conv(X ) is a polyhedron (ie, representable as Ax ≤ b)

Proposition

Extreme points of conv(X ) all lie in X

Hence:

max{cT x : x ∈ X} ≡ max{cT x : x ∈ conv(X )}
However it might require exponential number of inequalities to describe
conv(X )
What makes a formulation better than another?

X ⊆ conv(X ) ⊆ P1 ⊂ P2

P1 is better than P2

Definition
Given a set X ⊆ Rn and two formulations P1 and P2 for X , P1 is a better
formulation than P2 if P1 ⊂ P2
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Example

P1 =UFL with
∑

i∈M xij ≤ myj ∀j ∈ N
P2 =UFL with xij ≤ yj ∀i ∈ M, j ∈ N

P2 ⊂ P1

I P2 ⊆ P1 because summing xij ≤ yj over i ∈ M we obtain∑
i∈M xij ≤ myj

I P2 ⊂ P1 because there exists a point in P1 but not in P2:
m = 6 = 3 · 2 = k · n

x10 = 1 x20 = 1 x30 = 1
x41 = 1 x51 = 1 x61 = 1

∑
i xi0 ≤ 6y0 y0 = 1/2∑
i xi1 ≤ 6y1 y1 = 1/2
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z = max{c(x) : x ∈ X ⊆ Zn}

How can we prove that x∗ is optimal?
z UB
z LB
stop when z − z ≤ ε

z

z

z

I Primal bounds (here lower bounds): every feasible solution gives a LB
may be easy or hard, heuristics

I Dual bounds (here upper bounds): Relaxations

Optimality gap:

gap =
pb − db

inf{|z |, z ∈ [db, pb]}
(·100) for a minimization problem

(if pb ≥ 0 and db ≥ 0 then pb−db
db )

if db = pb = 0 then gap = 0
if no feasible sol found or db ≤ 0 ≤ pb then the gap is not computed.
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Proposition

(RP) zR = max{f (x) : x ∈ T ⊆ Rn} is a relaxation of
(IP) z = max{c(x) : x ∈ X ⊆ Rn} if :

(i) X ⊆ T or
(ii) f (x) ≥ c(x) ∀x ∈ X

In other terms:

max
s∈T

f (s) ≥
{
maxs∈T c(s)
maxs∈X f (s)

}
≥ max

s∈X
c(s)

I T : candidate solutions;
I X ⊆ T feasible solutions;
I f (x) ≥ c(x)
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How to construct relaxations?

1. IP : max{cT x : x ∈ P ∩ Zn},P = {c ∈ Rn : Ax ≤ b}
LP : max{cT x : x ∈ P}
Better formulations give better bounds (P1 ⊆ P2)

Proposition

(i) If a relaxation RP is infeasible, the original problem OP is infeasible.
(ii) Let x∗ optimal solution for RP. If x∗ ∈ X and f (x∗) = c(x∗) then x∗

is optimal for IP.

2. Combinatorial relaxations to easy problems that can be solved rapidly
Eg: TSP to Assignment problem Eg: Symmetric TSP to 1-tree
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3. Lagrangian relaxation

IP : z = max{cT x : Ax ≤ b, x ∈ X ⊆ Zn}
z(u) = max{cT x + u(b − Ax) : x ∈ X}

z(u) ≥ z ∀u ≥ 0

4. Duality:

Definition
Two problems:

z = max{c(x) : x ∈ X} w = min{w(u) : u ∈ U}

form a weak-dual pair if c(x) ≤ w(u) for all x ∈ X and all u ∈ U.
When z = w they form a strong-dual pair
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Proposition

z = max{cT x : Ax ≤ b, x ∈ Zn
+} and wLP = min{ubT : uA ≥ c , u ∈ Rm

+}
(ie, linear relaxations) form a weak-dual pair.

Proposition

Let IP and D be weak-dual pair:
(i) If D is unbounded, then IP is infeasible
(ii) If x∗ ∈ X and u∗ ∈ U satisfy c(x∗) = w(u∗) then x∗ is optimal for IP

and u∗ is optimal for D.

The advantage is that we do not need to solve an LP like in the LP relaxation
to have a bound, any feasible dual solution gives a bound.
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Weak pairs:
Matching: z = max{1T x : Ax ≤ 1, x ∈ Zm

+}
V. Covering: w = min{1T y : yTA ≥ 1, y ∈ Zn

+}

Proof: consider LP relaxations, then z ≤ zLP = wLP ≤ w .
(strong when graphs are bipartite)

Weak pairs:
Packing: z = max{1T x : Ax ≤ 1, x ∈ Zn

+}
S. Covering: w = min{1T x : Ax ≥ 1, x ∈ Zn

+}
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max{cT x : x ∈ X} ≡ max{cT x : x ∈ conv(X )}
X ⊆ Zn, P a polyhedron P ⊆ Rn and X = P ∩ Zn

Definition (Separation problem for a COP)

Given x∗ ∈ P is x∗ ∈ conv(X )? If not find an inequality ax ≤ b satisfied by
all points in X but violated by the point x∗.

(Farkas lemma states the existence of such an inequality.)
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Four properties that often go together:

Definition

(i) Efficient optimization property: ∃ a polynomial algorithm for
max{cx : x ∈ X ⊆ Rn}

(ii) Strong duality property: ∃ strong dual D min{w(u) : u ∈ U} that allows
to quickly verify optimality

(iii) Efficient separation problem: ∃ efficient algorithm for separation problem
(iv) Efficient convex hull property: a compact description of the convex hull

is available

Example:
If explicit convex hull strong duality holds

efficient separation property (just description of
conv(X ))
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