
DM811 - Finding maximum stable sets on

hypergraphs

Magnus Gausdal Find

October 26, 2008

Contents

1 Introduction and de�nitions 2

2 Data Structures 2

3 Construction Heuristics 3

3.1 Increasing Degree . 4
3.2 Remove Worst Vertex Heuristic 4
3.3 Random generation . 5
3.4 Comparison . 5

4 Local Search Algorithms 6

4.1 Addn�x . 6
4.2 Rm1add2 . 8
4.3 Comparison . 9

5 Stochastic Local Search Algorithms 9

5.1 Addn�x Tabu . 9
5.2 Rm1Add2 Iterated Local Search 11
5.3 Results . 11

6 Concluding remarks 14

7 How to run the program 14

2 DATA STRUCTURES

1 Introduction and de�nitions

This report is documentation of the project that serves as the exam of the
course DM811: �Heuristics and Local Search Algorithms for Combinatorial Op-
timization�, Department of Mathematics and Computer Science, University of
Southern Denmark. The topic of the project i �nding large cardinality stable
set on k-uniform unweighted hypergraphs. It should be noted that this problem
is NP-hard meaning that for large instances it would be inappropriate to use
exact methods. Therefore three construction heuristics have been designed and
implemented. To improve on these results two local search algorithms have been
designed, and both of these have been improved with mechanisms to escape local
optima.

All construction heuristics have been run on all the given 40 instances for
the seeds 0 to 9 (the non-randomized though have only been run once). The
two local search algorithms have been run on all three construction heuristics.
It turns out that one of the construction heuristics produces far better results
then any other, and because of that only that construction heuristic was tested
together with the two improved local search algorithms. These tests were limited
run for 300 seconds. All tests have been performed on computers having an Intel
Core 2 CPU, 1.86 GHz, 2GB of memory and the Ubuntu Linux distribution
version 8.04 with kernel version 2.6.24-21-generic. The implementation has been
carried out using java. For running the program small shell-scripts have been
written (instructions on how to use this can be found at the end of the report).
All graphs are made in R.

A note about terminology: An edge and a vertex are said to be incident if
the vertex is contained in the edge. I will be using the term �degree� of a vertex,
de�ned as the number of edges incident to a vertex. Two vertices are said to be
adjecent if there is at least one edge containing both vertices. These de�nitions
are also consistent with those of Claude Berge in his book �Hypergraphs�(1989).
I will throughout the report use the term �the set� referring to the working set
of vertices to be included in the stable set (this might or might not be a feasible
solution). I will call an edge �full� if it is a subset of the working set. I will
call an edge �critical� if all it's vertices but one are included in the working
set (the edge is critical in the sense that adding the last vertex will result in
a violation). The �violation� of a working set is the number of edges in the
graph fully included in the working set. The violation contribution of a vertex
v refers to the change of violation by adding/removing v (nonpositive if v is in
working set, and nonnegative if v is not in working set). A stable set is said to
be �maximal� when it's not possible to add a vertex and yield a new stable set.

2 Data Structures

Through this whole project I am using a datastructure representing a hyper-
graph. This datastructure contains the incidence matrix and a boolean array
�contained� telling whether or not any vertex is in the set. For the sake of
e�ciency I use and the following static data:

• For each vertex v, all edges containing v

Page 2 out of 14

3 CONSTRUCTION HEURISTICS

• For each edges e, all vertices in e

• For each vertex v, all vertices adjacent to v

And the following non-static data is also maintained:

• The sets of vertices included and not-included in the set

• For each edge the number vertices in the edge that is in the set

• For each vertex v it's �violation contribution�

• The total number of edges violating the stable set criterion

• For each vertex v all�critical edges� incident to v

• For each vertex v all �full edges� incident to v

Adding a vertex v to the set requires maintaining the redundant data men-
tioned above, it is done as shown (algorithm 1). The way to remove a vertex is
quite similar and has the same complexity.

Algorithm 1: Adds a vertex v to the set
1: set contained[v] ← true, add v to the set of contained vertices, and remove

v from the set of not-contained vertices
2: for e ∈ Edges incident to v do

3: if e is now full then
4: Increment the number of violations
5: for v′ ∈ e do

6: add e to v′s list of incident full edges
7: remove e from v′'s list of incident critical edges
8: end for

9: else

10: if e is now critical then
11: for v′ ∈ e do

12: add e to v′s list of incident critical edges
13: end for

14: end if

15: end if

16: end for

Computational Analysis Assume that the graph has n vertices and m edges
of size k. The for-loop in line 2 will be entered m times, and because all edges
has size k the computational complexity of this procedure will be O(m · k).
Using aggregate analysis the complexity of adding all vertices to the set can be
determined. It is clear that each edge is incident to k vertices, and because of
that the content of the for loop will in total be executed m · k times, meaning
that adding all vertices to the set has a complexity of O(m · k2).

3 Construction Heuristics

In this section three di�erent construction heuristics are presented. The main
idea is brie�y explained and afterwards a pseudocode scetch is given. For all the
construction heuristics an analysis of the computational complexity is given.

Page 3 out of 14

3.1 Increasing Degree 3 CONSTRUCTION HEURISTICS

3.1 Increasing Degree

It seems as a good idea to start by taking the vertices with low degrees. This is
coming from the assumption that taking a vertex with low degree rules out the
lowest number of possible vertices in the future. The algorithm then works by
iteratively adding the vertex with the lowest degree that can be added without
violating the stable set constraint. The algorithm then halts when the stable
set is maximal. The pseudocode scetch is shown (�algorithm 2�).

Algorithm 2: Increasing Degree Construction Heuristic.
1: ∀i ∈ 1..n calculate d[i]← degree(i)
2: minindex← 1
3: nrV erticesConsidered← 0
4: while nrVerticesConsidered < nrVertices do
5: for j ← 1 to nrVertices do
6: if d[j] < d[minIndex] then
7: minIndex← j
8: end if

9: end for

10: if violationcontribution[minIndex] = 0 then

11: Add vertex minIndex to set S
12: end if

13: d[minIndex]←∞
14: nrV erticesConsicered← nrV erticesConsicered + 1
15: end while

Computational Analysis Let n and m be the number of vertices and edges
respectively and let all edges have size k. The �rst line can of course be done
in time O(n) (using the incidence lists stored in the graph data structure). The
content of the while-loop starting on line 4 will be entered n times. The content
of the foor-loop starting on line 5 will be executed O(n2) times, and an upper
bound for the add on line 11 is obtained by considering the complexity of adding
all the vertices - this has complexity O(m · k2). The total time complexity of
this algorithm will then be O(m · k2 + n2).

3.2 Remove Worst Vertex Heuristic

This algorithm starts by adding all vertices to the set (this will surely generate
an infeasible set), and then iteratively choose the most violating until the set is
feasible. The �most violating� vertex is the vertex incident to the largest number
of fully contained edges. The pseudocode is shown (algorithm 3).

Page 4 out of 14

3.3 Random generation 3 CONSTRUCTION HEURISTICS

Algorithm 3: Remove Worst Vertex Heuristic
1: for i← 1 to n do

2: Add vertex i to set
3: end for

4: maxV iolV ert← 1
5: while There still is violations do
6: for j ← 1 ∈ set do
7: if violations[j] > violations[maxV iolV ert] then
8: maxV iolV ert← j
9: end if

10: end for

11: Remove vertex maxV iolV ert
12: end while

Computational Analysis Since this algorithm will be nore more expansive
than �rst to add all vertices, and after that remove all vertices, it is clear that
an upper bound of the time complexity is O(n2 + m · k2) (the n2 comes from
the for-loop in line 6).

3.3 Random generation

The random construction heuristic iteratively selects a random vertex, and
checks whether or not it can be added. If it can be added without violations
this is done. It halts when the found set is maximal. A pseudocode scetch is
shown (algorithm 4).

Algorithm 4: Random Selection Construction Heuristic.
1: nrV erticesConsidered← 0
2: while nrVerticesConsidered < nrVertices do
3: choose a random vertex v not in set
4: if violationcontribution[v] = 0 then

5: Add vertex v to set
6: end if

7: nrV erticesConsicered = nrV erticesConsicered + 1
8: end while

Computational Analysis Using the same reasoning as with the �Increas-
ingDegree� it is clear that this construction heuristic has the complexity of
O(m · k2).

3.4 Comparison

I have run my implementation of all the construction heuristics on all the 40
instances. For the random generation heuristic i have used the seeds 0 to 9 (both
included). Figure 1 shows the quality of the solutions for each class of instances.
From these results it is obvious that the implementation of the �removeWorst�
heuristic performs way better then the other two since the boxplots are non-
overlapping.

Page 5 out of 14

4 LOCAL SEARCH ALGORITHMS

In
cD

eg
R

em
W

or
st

R
an

d

800 820 840 860

Class one (10−1000)
In

cD
eg

R
em

W
or

st
R

an
d

935 940 945 950 955 960

Class two (50−1000)

In
cD

eg
R

em
W

or
st

R
an

d

660 680 700 720

Class three (10−10000)

In
cD

eg
R

em
W

or
st

R
an

d

895 900 905 910 915 920 925

Class four (50−1000)

Figure 1: Boxplots showing the qualities of the solutions for the di�erent algo-
rithms for the four di�erent instances

4 Local Search Algorithms

I have devised two local search algorithms, I have called them �addn�x� and
�rm1add2�.

4.1 Addn�x

This algorithm starts by adding a random vertex (not already included) to the
set. This will propably cause one or more edges to be fully included. To try
to repair this infeasible solution, I use a local search algorithm, with the �Best
improvement� strategy and the �swap neighbourhood� - I use the number of
edges fully contained as the evaluation function. This means that the set is a
stable set if and only if the evaluation is 0. If the solution could be repaired
using only swap-operations a new, and larger, stable set has been found, and
this procedure starts again. Otherwise, if at some time no swap operation can
reduce the evaluation function, the last feasible set is returned.
A pseudocode scetch of the repairing part is shown (algorithm 5).

Page 6 out of 14

4.1 Addn�x 4 LOCAL SEARCH ALGORITHMS

Algorithm 5: Addn�x local seach algorithm
1: while NumberOfV iolations 6= 0 do

2: minDelta← 0
3: for i ∈ allV erticesInSet do
4: for j ∈ allV erticesNotInSet do
5: if delta(j, i) < minDelta then

6: minAdd← j
7: minRemove← i
8: minDelta← delta(j, i)
9: end if

10: end for

11: end for

12: if minDelta ≥ 0 then

13: No improvement can be made - halt
14: else

15: Add vertex minAdd
16: Remove vertex minRemove
17: end if

18: end while

Speedup technique Delta evaluation is used so I don't have to calculate
all violations in the entire graph, instead I only consider relevant edges. Note
that to add vertex v1 and remove vertex v2 the gain in violation is the number
of critical edges incident to v1 (to which v2 is not incident), and the loss of
violation is the number of full edges incident to v2 (to which v1 is not incident).
A pseudocode scetch of the delta evaluation algorithm is shown (algorithm 6).

Algorithm 6: The delta function for algorithm 5
Input: Vertex to add j, and vertex to remove i

1: delta← 0
2: for v ∈ critical edges incident to j do
3: if i is not incident to v then

4: delta← delta + 1
5: end if

6: end for

7: for v ∈ full edges incident to i do
8: if j is not incident to v then

9: delta← delta− 1
10: end if

11: end for

12: return delta

Computational analysis Let again G be a hyper graph with n vertices and
m edges of size k. The size of the neighbourhood is O(n2) and for all possible
swaps the deltaviolation is computed. As mentioned before each vertex will on
average be in m·k

n edges. To calculate the delta evaluation for all i, j = 1..n will

therefore totally take O(n2) ·O
(

m·k
n

)
= O(n ·m ·k) (which is clearly dominating

the time to insert/remove the two vertices).

Page 7 out of 14

4.2 Rm1add2 4 LOCAL SEARCH ALGORITHMS

4.2 Rm1add2

The idea of this local search algorithm is to check if it's possible to remove one
vertex from the set and add two, to obtain a new stable set. The neighbourhood
of this function is all possible ways to add two vertices and remove one, meaning
that the size of the neighbourhood is O(n3). This algorithm halts when it is
not possible to remove 1 and add 2 and still have a feasible solution. A scetch
of the algorithm is shown at algorithm 7.

Algorithm 7: The remove 1 add 2 local search algorithm
1: improvement← TRUE
2: while improvement do
3: improvement← FALSE
4: for rmIndex ∈ verticesInSet do
5: for addIndex1 ∈ vertices not in setadjecent to rmIndex do

6: for addIndex2 ∈ vertices not in setadjecent to rmIndex do

7: if feasible(rmIndex, addIndex1, addIndex2) then
8: add vertices addindex1, addIndex2
9: remove vertex rmIndex

10: improvement← TRUE
11: Go to line 2
12: end if

13: end for

14: end for

15: end for

16: end while

Speedup techniques: Even though the neighbourhood has size O(n3) it can
in many cases be pruned a lot by using the fact, that if a vertex is removed the
only vertices that should be considered for adding are the vertices adjecent to
the removed vertex (assuming that the set was already stable). This doesn't
alway prune the neighbourhood though - for example in the instances given
where there are 10000 edges of size 50 all vertices are adjecent to all vertices
meaning that this �reduction� in search space doesn't prune at all.

In algorithm 7 the function �feasible(rm, add1, add2)� is used. It returns
TRUE if it yields a feasible solution remove vertex rm and insert vertices add1
and add2. If add1 or add2 is contained in any critical edge that does not contain
rm it will certainly not yield a stable set to insert both of them. Otherwise if
add1 and add2 are incident to the same edge e, and e would be fully contained
if add1 and add2 were added, then if rm is not in e it will yield a non-stable
set. If neither of these conditions are satis�ed the solution will still be valid. A
pseudocode scetch is shown (algorithm 8).

Page 8 out of 14

4.3 Comparison 5 STOCHASTIC LOCAL SEARCH ALGORITHMS

Algorithm 8: Feasible
Input: Vertex to remove rm, and vertices to add add1, add2.

1: for e ∈ critical edges incident to add1 do

2: if rm 6∈ e then
3: return FALSE
4: end if

5: end for

6: for e ∈ critical edges incident to add2 do

7: if rm 6∈ e then
8: return FALSE
9: end if

10: end for

11: for e ∈ edges incident to add1 and add2 not containing rm do

12: if e would be fully contained by adding add1 and add2 then

13: return FALSE
14: end if

15: end for

16: return TRUE

Computational Analysis The neighbourhood has size O(n3), and the when
the �feasible� function is called for all values of rm, add1, add2 the average num-
ber of edges per vertex will be m·k

n , so the total complexity of this algorithm
will be O(n2 ·m · k). It is obvious that this dominates the cost to add/remove
the vertices.

I should here be noted, that I had some experiments about expanding this al-
gorithm to a �remove2-add3�-strategy, but the neighbourhood (with size O(n5))
seemed too large to make it run in a reasonable time.

4.3 Comparison

For all three construction heuristics I have run the two local search algorithms
for the seeds 0 to 9. The boxplots grouped on the four instance classes is shown
on �gure 2. It can be seen that in most cases �rm1add2� local search algorithm
yields slightly better result than the �addn�x�, although in all cases the boxplots
are very overlapping.

5 Stochastic Local Search Algorithms

Both of my local search algorithms have been extended with escape mechanisms
enabling them to �nd other, and hopefully better, local optima. It should be
noted that there is a major di�erence between type of the two algorithms, the
�rst is working with infeasible solutions, the second doesn't.

5.1 Addn�x Tabu

I have extended the Addn�x local search algorithm in such a way, that the best
improvement strategy now makes the best possible swap, even if this swap will
increase the value of the evaluation function. When a vertex has been remove

Page 9 out of 14

5.1 Addn�x Tabu 5 STOCHASTIC LOCAL SEARCH ALGORITHMS

i1
i2

w
1

w
2

r1
r2

820 830 840 850 860 870

Class 1 (10−1000)

i1
i2

w
1

w
2

r1
r2

945 950 955 960

Class 2 (50−1000)

i1
i2

w
1

w
2

r1
r2

670 680 690 700 710 720 730

Class 3 (10−10000)

i1
i2

w
1

w
2

r1
r2

905 910 915 920 925

Class 4 (50−1000)

Figure 2: Boxplots of the qualities of the solutions for combinations of the three
construction heuristics and the two local searches. i, w and r mean Increas-
ingDegree, removeWorst and random respectively. 1 and 2 mean rm1add2 and
addn�x respectively.

Page 10 out of 14

5.2 Rm1Add2 Iterated Local Search5 STOCHASTIC LOCAL SEARCH ALGORITHMS

it is a tabu for a number of iterations, this number is selected randomly with
a uniform distribution between 0 and 30. The reason why the tabu tenure is
chosen in this way is that it seemed to result pretty well in my preliminary
tests. During the development I made some experiments to improve the tabu
search using the ideas from �reactive tabu search� 1 but it didn't yield any better
results in my preliminary tests.

5.2 Rm1Add2 Iterated Local Search

The Rm1Add2 has been improved by the use of Iterated Local Search. When a
local optimum is detected diversi�cation is performed by removing 42 random
vertices from the set. As with the tabu search I have done some preliminary
super�cial tests and on that background I have chosen 42.

T
ab

u
Ite

rL
s

870 872 874 876 878 880 882

Class one (10−1000)

T
ab

u
Ite

rL
s

958.0 958.5 959.0 959.5 960.0 960.5 961.0

Class two (50−1000)

T
ab

u
Ite

rL
s

725 730 735

Class three (10−10000)
T

ab
u

Ite
rL

s

922.0 922.5 923.0 923.5 924.0 924.5 925.0

Class four (50−1000)

Figure 3: Boxplots showing the quality of the solutions for the implementations
of the two algorithms grouped in the four instances

5.3 Results

I have run my implementation of the two previously mentioned algorithms on
all instances for 5 minutes for the seeds 0 to 9. Boxplots for the results of the
runs grouped by the four instance classes are shown on �gure 3. For all the runs
I have used the �Remove worst� construction heuristic as it was the heuristic
yielding the far best results (see 3.4). For all classes of instances the tabu search
performs better than the iterated local search although it should be noted that

1Page 11, slide 12 from the course slides

Page 11 out of 14

5.3 Results 5 STOCHASTIC LOCAL SEARCH ALGORITHMS

0 5 10 15

0
50

10
0

15
0

20
0

25
0

30
0

Class 1 (10−1000)

#Vertices added to stable set

T
im

e/
se

c

ItLS

TS

0.0 0.5 1.0 1.5

0
50

10
0

15
0

20
0

Class 2 (50−1000)

#Vertices added to stable set

T
im

e/
se

c

ItLS

TS

0 5 10 15 20

0
50

10
0

15
0

20
0

25
0

30
0

Class 3 (10−10000)

#Vertices added to stable set

T
im

e/
se

c

ItLS

TS

0.0 0.5 1.0 1.5 2.0

0
2

4
6

8
10

Class 4 (50−10000)

#Vertices added to stable set

T
im

e/
se

c

ItLS

TS

Figure 4: Scatterplot that for each instance shows corresponding values of so-
lution cost and the time it took to reach that solution

there are very little di�erence between the quality of the results using the two
methods for the classes two and four.
I have also plotted corresponding values for solution quality and the time it took
to reach that solution on �gure 4. It can be seen that for classes 1 and 3 the
tabu search continues to improve during the whole run, whereas the iterated
local search improves a lot in a very short time and then it is not able to �nd
better solutions after that. For all runs the iterated local search algorithm �nds
it's best solution after less than 20 seconds.
This suggests that the diversi�cation doesn't work as aimed - maybe because
the local search �nds the same local optimum again and again.
Generally both of my stochastic local search algorithms behave very poorly on
the instance classes 2 and 4. The tabu search is the only of the two search
methods making improvements for these instance classes. For instance 4 all
improvements are made within 7 seconds and for instance 2 nearly all improve-
ments are made within 100 second. This highly suggests that diversi�cation
mechanism doesn't work very well - maybe the tabu search would behave bet-
ter if the tabu tenure were increased, as it might increase the chance to �nd
solutions �far� from the solution found

Using the runs described above I yield the results showed at table 1, all
obtained by the tabu search.

Page 12 out of 14

5.3 Results 5 STOCHASTIC LOCAL SEARCH ALGORITHMS

Instance Best Solution
u-1000-10-1000-01.mss 880
u-1000-10-1000-02.mss 880
u-1000-10-1000-03.mss 881
u-1000-10-1000-04.mss 879
u-1000-10-1000-05.mss 879
u-1000-10-1000-06.mss 882
u-1000-10-1000-07.mss 881
u-1000-10-1000-08.mss 881
u-1000-10-1000-09.mss 879
u-1000-10-1000-10.mss 880
u-1000-10-10000-01.mss 733
u-1000-10-10000-02.mss 735
u-1000-10-10000-03.mss 737
u-1000-10-10000-04.mss 735
u-1000-10-10000-05.mss 736
u-1000-10-10000-06.mss 734
u-1000-10-10000-07.mss 735
u-1000-10-10000-08.mss 735
u-1000-10-10000-09.mss 735
u-1000-10-10000-10.mss 736
u-1000-50-1000-01.mss 960
u-1000-50-1000-02.mss 959
u-1000-50-1000-03.mss 959
u-1000-50-1000-04.mss 960
u-1000-50-1000-05.mss 960
u-1000-50-1000-06.mss 961
u-1000-50-1000-07.mss 960
u-1000-50-1000-08.mss 959
u-1000-50-1000-09.mss 959
u-1000-50-1000-10.mss 959
u-1000-50-10000-01.mss 925
u-1000-50-10000-02.mss 923
u-1000-50-10000-03.mss 924
u-1000-50-10000-04.mss 924
u-1000-50-10000-05.mss 924
u-1000-50-10000-06.mss 923
u-1000-50-10000-07.mss 924
u-1000-50-10000-08.mss 925
u-1000-50-10000-09.mss 923
u-1000-50-10000-10.mss 925

Table 1: For each instance the best result archieved.

Page 13 out of 14

7 HOW TO RUN THE PROGRAM

6 Concluding remarks

Three construction heuristics have been presented and tested, and it turns out
that on all tested instances the �Remove Worst� construction heuristic outper-
forms the other two in quality. Two local search algorithms have been presented,
there are really no big di�erence in the quality of the solutions, though both of
them perform best using the �Remove Worst� construction heuristic. These two
local search algorithms have been improved with a tabu search and an iterated
local search, respectively. It turns out that for 300 seconds �xed times runs, the
tabu search outperforms the iterated local search in terms of solution quality. It
should be noted that no of my local search algorithms are able to improve much
the solution found by construction heuristic in the cases where the edges have
size 50. Maybe a parameter tuning or improvement of the tabu search strategy
would be able to improve on these result. Maybe it is because the solutions
found really are so close to optimal that one shouldn't expect to �nd a better
solution using nonexact methods.

7 How to run the program

A script �mss� has been written. It works as follows:

mss -i infile -t time -s seed -o outfile -tt val -ch chNr -ls lsNr

Where infile speci�es the instance �le, outputfile speci�es the �le where
the found solution should be written. tt sets the tabutenure (this parame-
ter is of course relevant for the tabu search). Ch is the construction heuris-
tic number. They are numbered as follows: 1) increasingDegree, 2) remove-
Worst, 3) random. lsNr speci�es which local search algorithm is to be used.
They are numbered as follows: 1) �rm1add2�, 2) �addn�x�, 3) �addn�x-tabu�, 4)
�rm1add2IteratedLocalSearch�.

Page 14 out of 14

