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1. Computational Complexity



Computational Complexity of LS

For a local search algorithm to be effective, search initialization
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

@ search initialization

@ any single search step, including computation of
evaluation function value

For any problem in PLS ...
o local optimality can be verified in polynomial time
@ improving search steps can be computed in polynomial time
@ but: finding local optima may require super-polynomial time



Computational Complexity of LS

PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:
@ TSP with k-exchange neighborhood with & > 3
is PLS-complete.

@ TSP with 2- or 3-exchange neighborhood is in PLS, but
P LS-completeness is unknown.
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Definitions

Problem instance m

Search space S,

Neighborhood function A/ : S C 2°

Evaluation function f, : S - R

Definition:

The search landscape L is the vertex-labeled neighborhood graph given by
the triplet £ = (S, Ny, fr).




Search Landscape

Transition Graph of Iterative Improvement

Given £ = (S, Ny, fr), the transition graph of iterative improvement is a
directed acyclic subgraph obtained from £ by deleting all arcs (i, j) for which
it holds that the cost of solution j is worse than or equal to the cost of
solution .

It can be defined for other algorithms as well and it plays a central role in the
theoretical analysis of proofs of convergence.
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Ideal visualization of landscapes principles

@ Simplified landscape
representation @ Tabu Search @ Guided Local Search
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Fundamental Properties

The behavior and performance of an LS algorithm on a given problem

instance crucially depends on properties of the respective search landscape.

Simple properties:

[*]

®© 6 o o

search space size |5
reachability: solution j is reachable from solution i if neighborhood
graph has a path from i to ;.
o strongly connected neighborhood graph
o weakly optimally connected neighborhood graph
distance between solutions
neighborhood size (ie, degree of vertices in neigh. graph)
cost of fully examining the neighborhood

relation between different neighborhood functions
(if N1(s) € Ny(s) forall s € S then N5 dominates A7)
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Neighborhood Operator

Goal: providing a formal description of neighborhood functions for the three
main solution representations:

@ Permutation

o linear permutation: Single Machine Total Weighted Tardiness Problem
e circular permutation: Traveling Salesman Problem

@ Assignment: SAT, CSP
@ Set, Partition: Max Independent Set

A neighborhood function A : S — 2° is also defined through an operator.
An operator A is a collection of operator functions ¢ : S — S such that

seEN(s) <= JdeA|is)=¢

14



Permutations

I1(n) indicates the set all permutations of the numbers {1,2,... ,n}
(1,2...,n) is the identity permutation ..

If 7 € II(n) and 1 < i < n then:
@ 7; is the element at position i
@ pos, (i) is the position of element i

Alternatively, a permutation is a bijective function 7 (i) = 7,
The permutation product 7 - 7’ is the composition (7 - 7’); = 7/(7 (7))
For each 7 there exists a permutation such that 77! -7 =

77 1(i) = posy (i)

ANCH
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Linear Permutations

Swap operator _
Ag={05]1 <i<n}

(ng(ﬂ'l e T4 -7T’n,) - (7'('1 ce T 1 T . .7T7L)

Interchange operator
Ax = {01 <i<j<n}

(5%(71’) == (7T1 e TG AT T e e s T 1 TG T e e 7Tn)

(= set of all transpositions)
Insert operator

Ar={01<i<n1<j<nj#i}

5ij(7r): (7T1...7Ti,17TZ'+1...7Tj7TZ'7Tj+1...7Tn) 1<
1 (7Tl...7T‘77T¢7Fj+1...7Ti,17Ti+1...7Tn) Z>j
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Circular Permutations

Reversal (2-edge-exchange)
Ar={01<i<j<n}
6%(71’) = (7T1 e T 1T e e TG TG4 - .7Tn)
Block moves (3-edge-exchange)
Ap={08"1<i<j<k<n}
5?(%) = (M1 MoAT o TR o T T g1 - - - Ty
Short block move (Or-edge-exchange)

Asp = {041 <i<j<n}

(;gb,(ﬂ') — (771 e T AT T 1 T 42T« « - T 1T 43 - - ~7T’n,)
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Assignments

An assignment can be represented as a mapping
o:{Xy...X,} > {v:veD,|D|=k}:

O':{Xi:’UZ‘7Xj :’Uj,‘..}

One-exchange operator

Ap={0lgll <i<n1<I<k}

511'IE(J) ={0":0'(X;) = v and 0'(X;) = 0(X;) Vj #1i}

Two-exchange operator

Ao = {6511 <i < j<n}

65 (0) = {0 : ' (X;) = 0(X;),0'(X;) = 0(X;) and o' (X;) = o( X))V # i, j}
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Partitioning

An assignment can be represented as a partition of objects selected and not
selected s : {X} — {C,C}
(it can also be represented by a bit string)

One-addition operator B
Ag ={dg|veC}
tg(s)={s:C"=CUv and ¢ =C\v}

One-deletion operator
Mg ={dg|veC}

tg(s)={s:C"=C\v and é/zéL)"U}

Swap operator B
Ap={0ig|lveCuecC}

te(s)={s:C"=CUu\v and 6/:6Uv\u}
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Distances

Set of paths in £ with 5,5 € S:

s1=8,8,=8Vi:1<i<h-—1,(s;,811) € Ec}

If & = (s1,...,51) € ©(s,5") let || = h be the length of the path; then the
distance between any two solutions s, s” is the length of shortest path
between s and s’ in L:

d(s.s) = min |2

diam(L£) = max{dy(s,s") | s,s € S} (= maximal distance between any two
candidate solutions)

(= worst-case lower bound for number of search steps required for reaching
(optimal) solutions)

Note: with permutations it is easy to see that:

dy(m,7') = dp(n™ ' -7 1)
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Distances for Linear Permutation Representations

@ Swap neighborhood operator
computable in O(n?) by the precedence based distance metric:
ds(m, ') = #{{@, )1 <i<j<n,posy(mj) < pos (m;)}.
diam(Gyr) =n(n—1)/2

@ Interchange neighborhood operator
Computable in O(n) + O(n) since
dx(m,7)=dx (=t -7 1) =n—c(x ! 7)
() is the number of disjoint cycles that decompose a permutation.
diam(Gpry) =n —1

-1

o Insert neighborhood operator
Computable in O(n) + O(n log(n)) since
dr(m, 7"y =dr(m=t-7',1) =n —|lis(x—' - 7")| where lis(7) denotes the
length of the longest increasing subsequence.
diam(Gp,) =n—1
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Distances for Circular Permutation Representations

@ Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

@ Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm
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Distances for Assignment Representations

@ Hamming Distance

@ An assignment can be seen as a partition of n in k& mutually exclusive
non-empty subsets

One-exchange neighborhood operator

The partition-distance d, (P, P’) between two partitions P and P’ is
the minimum number of elements that must be moved between subsets
in P so that the resulting partition equals 7.

The partition-distance can be computed in polynomial time by solving
an assignment problem Given the assignment matrix A/ where in each
cell (i,7)itis ; € P and S € P" and defined A(P,P')
the assignment of maX|ma| sum then it is (Ilb(P PYy=n—A(P,P)




Example: Search space size and diameter for the TSP

@ Search space size = (n — 1)!/2

o Insert neighborhood
size = (n—3)n
diameter = n — 2

@ 2-exchange neighborhood
size= () =n-(n—1)/2
diameter in [n/2,n — 2]

@ 3-exchange neighborhood
size=(})=n-(n—1)-(n—2)/6
diameter in [n/3,n — 1]
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Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
G nr = n-dimensional hypercube; diameter of G s = n.
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Let V] and N5 be two different neighborhood functions for the same
instance (S, f,m) of a combinatorial optimization problem.

If for all solutions s € .S we have N{(s) C Ny(s) then we say that A5
dominates N}

Example:

In TSP, 1-insert is dominated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchanges that are not
1-insert)
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Other Search Space Properties

@ number of (optimal) solutions |5’

, solution density |S’[/]S|

o distribution of solutions within the neighborhood graph
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Phase Transition for 3-SAT

Random instances ~~ m clauses of n uniformly chosen variables
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Classification of search positions

position type

SLMIN (strict local min)
LMIN (local min)

IPLAT (interior plateau)
SLOPE

LEDGE

LMAX (local max)
SLMAX (strict local max)

L+ 4+ 1+ 4|V
P4+ 4
+ 4+ + 4+ 1

won

“4+" = present, “—" absent; table entries refer to neighbors with
larger (“>") , equal (*="), and smaller ("<") evaluation function values
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Other Search Space Properties

o plateux

@ barrier and basins

B1

Bz
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