
DM811

Heuristics for Combinatorial Optimization

Neighborhoods and Landscapes

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Computational Complexity

2. Search Space Properties
Introduction
Neighborhoods Formalized
Distances
Landscape Characteristics

3

Outline

1. Computational Complexity

2. Search Space Properties
Introduction
Neighborhoods Formalized
Distances
Landscape Characteristics

4

Computational Complexity of LS

For a local search algorithm to be effective, search initialization
and individual search steps should be efficiently computable.

Complexity class PLS: class of problems for which a local
search algorithm exists with polynomial time complexity for:

search initialization
any single search step, including computation of
evaluation function value

For any problem in PLS . . .
local optimality can be verified in polynomial time
improving search steps can be computed in polynomial time
but: finding local optima may require super-polynomial time

5

Computational Complexity of LS

PLS-complete: Among the most difficult problems in PLS;
if for any of these problems local optima can be found
in polynomial time, the same would hold for all problems in PLS.

Some complexity results:

TSP with k-exchange neighborhood with k > 3
is PLS-complete.

TSP with 2- or 3-exchange neighborhood is in PLS, but
PLS-completeness is unknown.

6

Outline

1. Computational Complexity

2. Search Space Properties
Introduction
Neighborhoods Formalized
Distances
Landscape Characteristics

7

Definitions

Problem instance π

Search space Sπ

Neighborhood function N : S ⊆ 2S

Evaluation function fπ : S → R

Definition:
The search landscape L is the vertex-labeled neighborhood graph given by
the triplet L = 〈Sπ, Nπ, fπ〉.

9

Search Landscape

Transition Graph of Iterative Improvement
Given L = 〈Sπ, Nπ, fπ〉, the transition graph of iterative improvement is a
directed acyclic subgraph obtained from L by deleting all arcs (i, j) for which
it holds that the cost of solution j is worse than or equal to the cost of
solution i.

It can be defined for other algorithms as well and it plays a central role in the
theoretical analysis of proofs of convergence.

10

Ideal visualization of landscapes principles

Simplified landscape
representation Tabu Search Guided Local Search

Iterated Local Search Evolutionary Alg.

11

Fundamental Properties

The behavior and performance of an LS algorithm on a given problem
instance crucially depends on properties of the respective search landscape.

Simple properties:

search space size |S|
reachability: solution j is reachable from solution i if neighborhood
graph has a path from i to j.

strongly connected neighborhood graph

weakly optimally connected neighborhood graph

distance between solutions
neighborhood size (ie, degree of vertices in neigh. graph)
cost of fully examining the neighborhood
relation between different neighborhood functions
(if N1(s) ⊆ N2(s) forall s ∈ S then N2 dominates N1)

12

Neighborhood Operator

Goal: providing a formal description of neighborhood functions for the three
main solution representations:

Permutation
linear permutation: Single Machine Total Weighted Tardiness Problem
circular permutation: Traveling Salesman Problem

Assignment: SAT, CSP
Set, Partition: Max Independent Set

A neighborhood function N : S → 2S is also defined through an operator.
An operator ∆ is a collection of operator functions δ : S → S such that

s′ ∈ N(s) ⇐⇒ ∃δ ∈ ∆ | δ(s) = s′

14

Permutations
Π(n) indicates the set all permutations of the numbers {1, 2, . . . , n}

(1, 2 . . . , n) is the identity permutation ι.

If π ∈ Π(n) and 1 ≤ i ≤ n then:
πi is the element at position i
posπ(i) is the position of element i

Alternatively, a permutation is a bijective function π(i) = πi

The permutation product π · π′ is the composition (π · π′)i = π′(π(i))

For each π there exists a permutation such that π−1 · π = ι
π−1(i) = posπ(i)

∆N ⊂ Π

15

Linear Permutations
Swap operator

∆S = {δiS |1 ≤ i ≤ n}

δiS(π1 . . . πiπi+1 . . . πn) = (π1 . . . πi+1πi . . . πn)

Interchange operator

∆X = {δijX |1 ≤ i < j ≤ n}

δijX(π) = (π1 . . . πi−1πjπi+1 . . . πj−1πiπj+1 . . . πn)

(≡ set of all transpositions)

Insert operator

∆I = {δijI |1 ≤ i ≤ n, 1 ≤ j ≤ n, j 6= i}

δijI (π) =

{
(π1 . . . πi−1πi+1 . . . πjπiπj+1 . . . πn) i < j
(π1 . . . πjπiπj+1 . . . πi−1πi+1 . . . πn) i > j

16

Circular Permutations
Reversal (2-edge-exchange)

∆R = {δijR |1 ≤ i < j ≤ n}

δijR (π) = (π1 . . . πi−1πj . . . πiπj+1 . . . πn)

Block moves (3-edge-exchange)

∆B = {δijkB |1 ≤ i < j < k ≤ n}

δijB (π) = (π1 . . . πi−1πj . . . πkπi . . . πj−1πk+1 . . . πn)

Short block move (Or-edge-exchange)

∆SB = {δijSB |1 ≤ i < j ≤ n}

δijSB(π) = (π1 . . . πi−1πjπj+1πj+2πi . . . πj−1πj+3 . . . πn)

17

Assignments
An assignment can be represented as a mapping
σ : {X1 . . . Xn} → {v : v ∈ D, |D| = k}:

σ = {Xi = vi, Xj = vj , . . .}

One-exchange operator

∆1E = {δil1E |1 ≤ i ≤ n, 1 ≤ l ≤ k}

δil1E
(
σ) =

{
σ′ : σ′(Xi) = vl and σ′(Xj) = σ(Xj) ∀j 6= i

}
Two-exchange operator

∆2E = {δij2E |1 ≤ i < j ≤ n}

δij2E(σ) =
{
σ′ : σ′(Xi) = σ(Xj), σ

′(Xj) = σ(Xi) and σ′(Xl) = σ(Xl)∀l 6= i, j
}
18

Partitioning
An assignment can be represented as a partition of objects selected and not
selected s : {X} → {C,C}
(it can also be represented by a bit string)

One-addition operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ v and C

′
= C \ v}

One-deletion operator
∆1E = {δv1E | v ∈ C}

δv1E
(
s) =

{
s : C ′ = C \ v and C

′
= C ∪ v}

Swap operator
∆1E = {δv1E | v ∈ C, u ∈ C}

δv1E
(
s) =

{
s : C ′ = C ∪ u \ v and C

′
= C ∪ v \ u}

19

Distances
Set of paths in L with s, s′ ∈ S:
Φ(s, s′) = {(s1, . . . , sh) | s1 = s, sh = s′ ∀i : 1 ≤ i ≤ h− 1, 〈si, si+1〉 ∈ EL}

If φ = (s1, . . . , sh) ∈ Φ(s, s′) let |φ| = h be the length of the path; then the
distance between any two solutions s, s′ is the length of shortest path
between s and s′ in L:

dN (s, s′) = min
φ∈Φ(s,s′)

|Φ|

diam(L) = max{dN (s, s′) | s, s′ ∈ S} (= maximal distance between any two
candidate solutions)
(= worst-case lower bound for number of search steps required for reaching
(optimal) solutions)

Note: with permutations it is easy to see that:

dN (π, π′) = dN (π−1 · π′, ι)

21

Distances for Linear Permutation Representations

Swap neighborhood operator
computable in O(n2) by the precedence based distance metric:
dS(π, π′) = #{〈i, j〉|1 ≤ i < j ≤ n, posπ′(πj) < posπ′(πi)}.
diam(GN) = n(n− 1)/2

Interchange neighborhood operator
Computable in O(n) +O(n) since
dX(π, π′) = dX(π−1 · π′, ι) = n− c(π−1 · π′)
c(π) is the number of disjoint cycles that decompose a permutation.
diam(GNX

) = n− 1

Insert neighborhood operator
Computable in O(n) +O(n log(n)) since
dI(π, π

′) = dI(π
−1 · π′, ι) = n− |lis(π−1 · π′)| where lis(π) denotes the

length of the longest increasing subsequence.
diam(GNI

) = n− 1
22

Distances for Circular Permutation Representations

Reversal neighborhood operator
sorting by reversal is known to be NP-hard
surrogate in TSP: bond distance

Block moves neighborhood operator
unknown whether it is NP-hard but there does not exist a proved
polynomial-time algorithm

23

Distances for Assignment Representations

Hamming Distance

An assignment can be seen as a partition of n in k mutually exclusive
non-empty subsets

One-exchange neighborhood operator
The partition-distance d1E(P,P ′) between two partitions P and P ′ is
the minimum number of elements that must be moved between subsets
in P so that the resulting partition equals P ′.

The partition-distance can be computed in polynomial time by solving
an assignment problem. Given the assignment matrix M where in each
cell (i, j) it is |Si ∩ S′j | with Si ∈ P and S′j ∈ P ′ and defined A(P,P ′)
the assignment of maximal sum then it is d1E(P,P ′) = n−A(P,P ′)

24

Example: Search space size and diameter for the TSP

Search space size = (n− 1)!/2

Insert neighborhood
size = (n− 3)n
diameter = n− 2

2-exchange neighborhood
size =

(
n
2

)
= n · (n− 1)/2

diameter in [n/2, n− 2]

3-exchange neighborhood
size =

(
n
3

)
= n · (n− 1) · (n− 2)/6

diameter in [n/3, n− 1]

25

Example: Search space size and diameter for SAT

SAT instance with n variables, 1-flip neighborhood:
GN = n-dimensional hypercube; diameter of GN = n.

26

Let N1 and N2 be two different neighborhood functions for the same
instance (S, f, π) of a combinatorial optimization problem.
If for all solutions s ∈ S we have N1(s) ⊆ N2(s) then we say that N2

dominates N1

Example:

In TSP, 1-insert is dominated by 3-exchange.
(1-insert corresponds to 3-exchange and there are 3-exchanges that are not
1-insert)

27

Other Search Space Properties

number of (optimal) solutions |S′|, solution density |S′|/|S|

distribution of solutions within the neighborhood graph

29

Phase Transition for 3-SAT

Random instances m clauses of n uniformly chosen variables

0

0.2

0.4

0.6

0.8

1

3 3.5 4 4.5 5 5.5 6

#cl/#var

P
(s

at
),

 P
(u

ns
at

)

−4

−3

−2

−1

0

1

P(sat)
P(unsat)

kcnfs mean sc (all)
lo

g
m

ea
n

se
ar

ch
 c

os
t [

C
P

U
 s

ec
]

0

0.2

0.4

0.6

0.8

1

3 3.5 4 4.5 5 5.5 6

#cl/#var

P
(s

at
),

 P
(u

ns
at

)
−4

−3

−2

−1

0

1

kcnfs mean sc (unsat)
kcnfs mean sc (all)
nov+ mean sc (sat)

P(sat)
P(unsat)

lo
g

m
ea

n
se

ar
ch

 c
os

t [
C

P
U

 s
ec

]

30

Classification of search positions

SLMIN

SLOPELEDGE

LMAXSLMAX

LMIN

IPLAT

position type > = <

SLMIN (strict local min) + – –
LMIN (local min) + + –
IPLAT (interior plateau) – + –
SLOPE + – +
LEDGE + + +
LMAX (local max) – + +
SLMAX (strict local max) – – +

“+” = present, “–” absent; table entries refer to neighbors with
larger (“>”) , equal (“=”), and smaller (“<”) evaluation function values

31

Other Search Space Properties

plateux

barrier and basins

B4

B3

B1

B2

l2
l1

B4

B3

B1

B2

32

	Computational Complexity
	Search Space Properties
	Introduction
	Neighborhoods Formalized
	Distances
	Landscape Characteristics

