DM811

Heuristics for Combinatorial Optimization

Efficient Local Search

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Course Overview

S X N

AN N

(]

]

Combinatorial Optimization, Methods and Models

CH and LS: overview

Working Environment and Solver Systems

Methods for the Analysis of Experimental Results

Construction Heuristics

Local Search: Components, Basic Algorithms

Efficient Local Search: Incremental Updates and Neighborhood Pruning
Local Search: Neighborhoods and Search Landscape

Stochastic Local Search & Metaheuristics

Configuration Tools: F-race

Very Large Scale Neighborhoods

Examples: GCP, CSP, TSP, SAT, MaxIndSet, SMTWP, Steiner Tree,
Unrelated Parallel Machines, p-median, set covering, QAP, ...

Outline

1. Efficient Local Search

2. Examples
SAT
TSP
SMTWTP

Efficient Local Search
Examples

Efficient Local Search

Outline Examples

1. Efficient Local Search

Summary: Local Search Algorithms Efficient Lol Search
(as in [Hoos, Stiitzle, 2005])

For given problem instance 7:

1. search space S,

2. evaluation function f, : S —+ R

3. neighborhood relation ; C S, x S,

4. set of memory states M,

5. initialization function init :) — S, x M)
6. step function step: S; x M, — S, x M,

7. termination predicate terminate : S; x M, — {T, L}

Efficient Local Search

Efficiency and Effectiveness

After implementation and test of the above components, improvements in
efficiency (ie, computation time) can be achieved by:

A. fast incremental evaluation (ie, delta evaluation)
B. neighborhood pruning

C. clever use of data structures

Improvements in effectiveness, ie, quality, can be achieved by:

D. application of a metaheuristic

E. definition of a larger neighborhood

Efficient Local Search

Outline Exarmeles

2. Examples
SAT
TSP
SMTWTP

M AX_SAT Eiit:'i-‘epritesLocﬂ Search

Notation:
@ n 0-1 variables z;, j € N = {1,2,...,n},

@ m clauses C;, i € M, and weights w; (>0),i€ M ={1,2,...,m}

maXaeo,1}» »_{ws | ¢ € M and C; is satisfied in a}

oszlij

L =Ujendzj. a5} set of literals

-] C, (- L forie M (e.g., C, = {$17f37I8}).

10

Let's take the case w; = 1 for all j € N

@ Assignment: a € {0,1}"

@ Evaluation function: f(a) = # unsatisfied clauses
@ Neighborhood: one-flip

@ Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of

largest C)
A better approach:

0 C(z;)={ie M|z; € C;} (ie., clauses dependent on z;)
o L(z;)={le N |3Jie M with z; € C; and z; € C;}
@ f(a) = # unsatisfied clauses
o Alz) = f(a) — f(a),a’ = 67 (a) (score of ;)
Initialize:

@ compute f, score of each variable, and list unsat clauses in O(mk)
@ init C'(x;) for all variables

Examine Neighborhood

@ choose the var with best score
Update:
@ change the score of variables affected, that is, look in L(-) and C()

O(mk)

C(x;) Data Structure

Variables

Examples

12

Even better approach (though same asymptotic complexity):
~ after the flip of z; only the score of variables in L(z;) that critically depend on
x; actually changes

@ Clause C; is critically satisfied by a variable z; in a iff:
o x;isin C;
o () is satisfied in a and flipping 2; makes C; unsatisfied
(e.g., 1 VOV O but not 1 V1V 0)

Keep a list of such clauses for each var

@ z; is critically dependent on xz; under a iff:
there exists C; € C(x;) N C(x;) and such that flipping ;:
o (; changes satisfaction status
o (; changes satisfied /critically satisfied status
Initialize:
@ compute score of variables;
@ init C'(x;) for all variables
@ init status criticality for each clause
Update:
change sign to score of x;
for all C; in C(z;) do
L for all xr € C; do

| update score z; depending on its critical status before flipping x;

TS P Examples

Efficient implementations of 2-opt, 2H-opt and 3-opt local search.

A. Delta evaluation already in O(1)
B. Fixed radius search + DLB

C. Data structures

Details at black board and references [Bentley, 1992; Johnson and McGeoch,
2002; Applegate et al., 2006]

15

jent L Search
Local Search for the Traveling Salesman #¥¥eblem

o k-exchange heuristics
2-opt

2.5-opt

Or-opt

3-opt

@ complex neighborhoods

o Lin-Kernighan

o Helsgaun's Lin-Kernighan
o Dynasearch

e ejection chains approach

Implementations exploit speed-up techniques

1
2
3.
4

. neighborhood pruning: fixed radius nearest neighborhood search

. neighborhood lists: restrict exchanges to most interesting candidates
don't look bits: focus perturbative search to “interesting” part

. sophisticated data structures

Implementation examples by Stiitzle:
http://www.sls-book.net/implementations.html

16

http://www.sls-book.net/implementations.html

TSP data structures
Tour representation:
@ determine pos of v in 7
@ determine succ and prec
o check whether v, is visited between w; and u;
o execute a k-exchange (reversal)
Possible choices:
e |V| < 1.000 array for m and 7!
o |V| < 1.000.000 two level tree
e |V] > 1.000.000 splay tree
Moreover static data structure:
@ priority lists
o k-d trees

Efficient Local Search
Examples

17

Efficient Local Search
Examples

Look at implementation of local search for TSP by T. Stiitzle:

File: http://www.imada.sdu.dk/ marco/DM811/Resources/ls.c

two_opt_b(tour); % best improvement, no speedup

two_opt_f(tour); % first improvement, no speedup

two_opt_best(tour); % first improvement including speed-ups (dlbs, fixed radius near
neighbour searches, neughbourhood lists)

two_opt_first(tour); % best improvement including speed-ups (dlbs, fixed radius near
neighbour searches, neughbourhood lists)

three_opt_first(tour); % first improvement

18

http://www.imada.sdu.dk/~marco/DM811/Resources/ls.c

Efficient Local Search
Examples

Table 17.1 Cases for k-opt moves.

No. of Cases
1
4
20
148
1,358
15,104
198,144
2,998,656
10 51,290,496

R R T A TR T =

[Appelgate Bixby, Chvatal, Cook, 2006]

19

Tour Length

Table 17.2 Computer-generated source code for k-opt moves.

k No. of Lines
6 120,228
7
8

1,259,863
17,919,296

770000 T 1 T
[

760000

750000

740000

730000

720000
2

Figure 17.1 k-opt on a 10,000-city Euclidean TSP.

Efficient Local Search
Examples

20

References s

Applegate D.L., Bixby R.E., Chvatal V., and Cook W.J. (2006). The Traveling
Salesman Problem: A Computational Study. Princeton University Press.

Bentley J. (1992). Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4(4), pp. 387-411.

Johnson D.S. and McGeoch L.A. (2002). Experimental analysis of heuristics for the
STSP. In The Traveling Salesman Problem and Its Variations, edited by G. Gutin
and A. Punnen, pp. 369-443. Kluwer Academic Publishers, Boston, MA, USA.

22

Single Machine Total Weighted Tardiness<Htroblem

o Interchange: size (1}) and O(|i — j|) evaluation each

o first-improvement: 7;,
Pr; < pr, forimprovements, w; 7} +w; T} must decrease because jobs

in 7;,...,m; can only increase their tardiness.
Pr; > Pr;, Ppossible use of auxiliary data structure to speed up the com-
putation

o best-improvement: 7;, m
Pr; < pr, for improvements, w;T; + w; T} must decrease at least as
the best interchange found so far because jobs in 7;, ..., 7
can only increase their tardiness.
Pr; = Pr, possible use of auxiliary data structure to speed up the com-
putation

@ Swap: size n — 1 and O(1) evaluation each

@ Insert: size (n — 1)? and O(|i — j|) evaluation each
But possible to speed up with systematic examination by means of
swaps: an interchange is equivalent to |i — j| swaps hence overall
examination takes O(n?)

24

	Efficient Local Search
	Examples
	SAT
	TSP
	SMTWTP

