# DM811 <br> Heuristics for Combinatorial Optimization 

# Compendium <br> Basic Concepts in Algorithmics 

Marco Chiarandini<br>Department of Mathematics \& Computer Science<br>University of Southern Denmark

## Outline

## Outline

## Graphs

Graphs are combinatorial structures useful to model several applications
Terminology:

- $G=(V, E), E \subseteq V \times V$, vertices, edges, $n=|V|, m=|E|$, undirected graphs, subgraph, induced subgraph
- $e=(u, v) \in E, e$ incident on $u$ and $v ; u, v$ adjacent, edge weight or cost
- particular cases often omitted: self-loops, multiple parallel edges
- degree, $\delta, \Delta$, outdegree, indegree
- path $P=<v_{0}, v_{1}, \ldots, v_{k}>,\left(v_{0}, v_{1}\right) \in E, \ldots,\left(v_{k-1}, v_{k}\right) \in E$, $<v_{0}, v_{1}>$ has length $2,<v_{0}, v_{1}, v_{2}, v_{0}>$ cycle, walk, path
- arcs, directed acyclic graph
- digraph strongly connected ( $\forall u, v \exists(u v)$-path), strongly connected components
- $G$ is a tree $(\Longrightarrow \exists$ path between any two vertices $) \Longleftrightarrow G$ is connected and has $n-1$ edges $\Longleftrightarrow G$ is connected and contains no cycles.
- parent, children, sibling, height, depth


## Representing Graphs

Operations:

- Access associated information (NodeArray, EdgeArray, Hashes)
- Navigation: access outgoing edges
- Edge queries: given $u$ and $v$ is there an edge?
- Update: add remove edges, vertices

How to choose?

## Data Structures:

- Edge sequences
- Adjacency arrays
- Adjacency lists
- Adjacency matrix
- it depends on the graphs and the application
- if time and space not crucial no need to customize the structures
- use interfaces that make easy to change the data structure
- libraries offer different choices (Boost, lemon, Java jdsl.graph)


## Motivations

Questions:

1. How good is the algorithm designed?
2. How hard, computationally, is a given a problem to solve using the most efficient algorithm for that problem?
3. Asymptotic notation, running time bounds Approximation theory
4. Complexity theory

## Asymptotic notation

$n \in \mathbf{N}$ instance size; $\pi \in \Pi_{n}$ instance $\pi$ belonging to class $\Pi_{n}$

$$
\begin{array}{lll}
\max \text { time } & \text { worst case } & T(n)=\max \left\{T(\pi): \pi \in \Pi_{n}\right\} \\
\text { average time } & \text { average case } & T(n)=\frac{1}{\left|\Pi_{n}\right|}\left\{\sum_{\pi} T(\pi): \pi \in \Pi_{n}\right\} \\
\text { min time } & \text { best case } & T(n)=\min \left\{T(\pi): \pi \in \Pi_{n}\right\}
\end{array}
$$

Growth rate or asymptotic analysis
$f(n)$ and $g(n)$ same growth rate if $\quad c \leq \frac{f(n)}{g(n)} \leq d$ for $n$ large $f(n)$ grows faster than $g(n)$ if $\quad f(n) \geq c \cdot g(n)$ for all $c$ and $n$ large
big 0

$$
O(f)=\left\{g(n): \exists c>0, \forall n>n_{0}: g(n) \leq c \cdot f(n)\right\}
$$

big omega $\Omega(f)=\left\{g(n): \exists c>0, \forall n>n_{0}: g(n) \geq c \cdot f(n)\right\}$
theta
$\Theta(f)=O(f) \cap \Omega(f)$
(little o $\quad o(f)=\{g: g$ grows strictly more slowly than $f\}$ )

## Machine model

For asymptotic analysis we use RAM machine

- sequential, single processor unit
- all memory access take same amount of time

It is an abstraction from machine architecture: it ignores caches, memories hierarchies, parallel processing (SIMD, multi-threading), etc.

Total execution of a program $=$ total number of instructions executed
We are not interested in constant and lower order terms

## Pseudo-code

We express algorithms in natural language and mathematical notation, and in pseudo-code, which is an abstraction from programming languages $\mathrm{C}, \mathrm{C}++$, Java, etc.
(In implementation you can choose your favorite language)
Programs must be correct. Certifying algorithm: computes a certificate for a post condition (without increasing asymptotic running time)

## Good Algorithms

We say that an algorithm $A$ is

Efficient $=$ good $=$ polynomial time $=$ polytime iff
there exists polynomial $p(n)$ such that $T(A)=O(p(n))$

There are problems for which no polytime algorithm is known.
This course is about those problems.
Complexity theory classifies problems

## Polynomial vs. exponential growth

(Harel 2000)


## Complexity Classes

[Garey and Johnson, 1979]
Consider a Decision Search Problem П:

- $\Pi$ is in $P$ if $\exists$ algorithm $\mathcal{A}$ that finds a solution in polynomial time.
- $\Pi$ is in $N P$ if $\exists$ verification algorithm $\mathcal{A}$ that verifies whether a binary certificate is a solution to the problem in polynomial time.
- a search problem $\Pi^{\prime}$ is (polynomially) reducible to $\Pi\left(\Pi^{\prime} \longrightarrow \Pi\right)$ if there exists an algorithm $\mathcal{A}$ that solves $\Pi^{\prime}$ by using a hypothetical subroutine $\mathcal{S}$ for $\Pi$ and except for $\mathcal{S}$ everything runs in polynomial time.
- $\Pi$ is $N P$-complete if

1. it is in $N P$
2. there exists some NP-complete problem $\Pi^{\prime}$ that reduces to $\Pi\left(\Pi^{\prime} \longrightarrow \Pi\right)$

- If $\Pi$ satisfies property 2 , but not necessarily property 1 , we say that it is $N P$-hard:
- NP: Class of problems that can be solved in polynomial time by a non-deterministic machine.
Note: non-deterministic $\neq$ randomized; non-deterministic machines are idealized models of computation that have the ability to make perfect guesses.
- NP-complete: Among the most difficult problems in $N P$; believed to have at least exponential time-complexity for any realistic machine or programming model.
- $N P$-hard: At least as difficult as the most difficult problems in $N P$, but possibly not in $N P$-complete (i.e., may have even worse complexity than $N P$-complete problems).


## NP-Completeness Proofs



Many combinatorial problems are hard but some problems can be solved efficiently

- Longest path problem is $N P$-hard but not shortest path problem
- SAT for 3-CNF is $N P$-complete but not 2-CNF (linear time algorithm)
- Hamiltonian path is $N P$-complete but not the Eulerian path problem
- TSP on Euclidean instances is $N P$-hard but not where all vertices lie on a circle.

An online compendium on the computational complexity of optimization problems:
http://www.nada.kth.se/~viggo/problemlist/compendium.html

## Theoretical Analysis

- Worst-case analysis (runtime and quality): worst performance of algorithms over all possible instances
- Probabilistic analysis (runtime): average-case performance over a given probability distribution of instances
- Average-case (runtime): overall possible instances for randomized algorithms
- Asymptotic convergence results (quality)
- Approximation of optimal solutions: sometimes possible in polynomial time (e.g., Euclidean TSP), but in many cases also intractable (e.g., general TSP);
- Domination
- Algorithm invariance


## Approximation Algorithms

Definition: Approximation Algorithms
An algorithm $\mathcal{A}$ is said to be a $\delta$-approximation algorithm if it runs in polynomial time and for every problem instance $\pi$ with optimal solution value $O P T(\pi)$

$$
\begin{array}{lll}
\text { minimization: } & \frac{\mathcal{A}(\pi)}{O P T(\pi)} \leq \delta & \delta \geq 1 \\
\text { maximization: } & \frac{\mathcal{A}(\pi)}{O P T(\pi)} \geq \delta & \delta \leq 1
\end{array}
$$

( $\delta$ is called worst case bound, worst case performance, approximation factor, approximation ratio, performance bound, performance ratio, error ratio)

## Approximation Algorithms

Definition: Polynomial approximation scheme
A family of approximation algorithms for a problem $\Pi,\left\{\mathcal{A}_{\epsilon}\right\}_{\epsilon}$, is called a polynomial approximation scheme (PAS), if algorithm $\mathcal{A}_{\epsilon}$ is a $(1+\epsilon)$-approximation algorithm and its running time is polynomial in the size of the input for each fixed $\epsilon$

Definition: Fully polynomial approximation scheme
A family of approximation algorithms for a problem $\Pi,\left\{\mathcal{A}_{\epsilon}\right\}_{\epsilon}$, is called a fully polynomial approximation scheme (FPAS), if algorithm $\mathcal{A}_{\epsilon}$ is a
$(1+\epsilon)$-approximation algorithm and its running time is polynomial in the size of the input and $1 / \epsilon$

## Useful Graph Algorithms

- Breadth first, depth first search, traversal
- Transitive closure
- Topological sorting
- (Strongly) connected components
- Shortest Path
- Minimum Spanning Tree
- Matching


## Randomized Algorithms

Most often algorithms are randomized. Why?

- possibility of gains from re-runs
- adversary argument
- structural simplicity for comparable average performance,
- speed up,
- avoiding loops in the search
- ...


## Randomized Algorithms

Definition: Randomized Algorithms
Their running time depends on the random choices made. Hence, the running time is a random variable.

Las Vegas algorithm: it always gives the correct result but in random runtime (with finite expected value).

Monte Carlo algorithm: the result is not guaranteed correct. Typically halted due to bouned resources.

## Randomized Heuristics

In the case of randomized optimization heuristics both solution quality and runtime are random variables.

We distinguish:

- single-pass heuristics (denoted $\mathcal{A}^{-1}$ ): have an embedded termination, for example, upon reaching a certain state (generalized optimization Las Vegas algorithms [B2])
- asymptotic heuristics (denoted $\mathcal{A}^{\infty}$ ): do not have an embedded termination and they might improve their solution asymptotically (both probabilistically approximately complete and essentially incomplete [B2])

